1,142 research outputs found

    A potential new method for determining the temperature of cool stars

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13489.xPeer reviewe

    Comparison of local pole assignment methods

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76770/1/AIAA-20171-818.pd

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include

    Testing gravity to second post-Newtonian order: a field-theory approach

    Full text link
    A new, field-theory-based framework for discussing and interpreting tests of gravity, notably at the second post-Newtonian (2PN) level, is introduced. Contrary to previous frameworks which attempted at parametrizing any conceivable deviation from general relativity, we focus on the best motivated class of models, in which gravity is mediated by a tensor field together with one or several scalar fields. The 2PN approximation of these "tensor-multi-scalar" theories is obtained thanks to a diagrammatic expansion which allows us to compute the Lagrangian describing the motion of N bodies. In contrast with previous studies which had to introduce many phenomenological parameters, we find that the 2PN deviations from general relativity can be fully described by only two new 2PN parameters, epsilon and zeta, beyond the usual (Eddington) 1PN parameters beta and gamma. It follows from the basic tenets of field theory, notably the absence of negative-energy excitations, that (beta-1), epsilon and zeta (as well as any new parameter entering higher post-Newtonian orders) must tend to zero with (gamma-1). It is also found that epsilon and zeta do not enter the 2PN equations of motion of light. Therefore, light-deflection or time-delay experiments cannot probe any theoretically motivated 2PN deviation from general relativity, but they can give a clean access to (gamma-1), which is of greatest significance as it measures the basic coupling strength of matter to the scalar fields. Because of the importance of self-gravity effects in neutron stars, binary-pulsar experiments are found to constitute a unique testing ground for the 2PN structure of gravity. A simplified analysis of four binary pulsars already leads to significant constraints: |epsilon| < 7x10^-2, |zeta| < 6x10^-3.Comment: 63 pages, 11 figures.ps.tar.gz.uu, REVTeX 3.

    Magnetic properties of exactly solvable doubly decorated Ising-Heisenberg planar models

    Full text link
    Applying the decoration-iteration procedure, we introduce a class of exactly solvable doubly decorated planar models consisting both of the Ising- and Heisenberg-type atoms. Exact solutions for the ground state, phase diagrams and basic physical quantities are derived and discussed. The detailed analysis of the relevant quantities suggests the existence of an interesting quantum antiferromagnetic phase in the system.Comment: 9 pages, 9 figures, submitted to Physical Review

    Semiclassical theory of transport in a random magnetic field

    Get PDF
    We study the semiclassical kinetics of 2D fermions in a smoothly varying magnetic field B(r)B({\bf r}). The nature of the transport depends crucially on both the strength B0B_0 of the random component of B(r)B({\bf r}) and its mean value Bˉ\bar{B}. For Bˉ=0\bar{B}=0, the governing parameter is α=d/R0\alpha=d/R_0, where dd is the correlation length of disorder and R0R_0 is the Larmor radius in the field B0B_0. While for α1\alpha\ll 1 the Drude theory applies, at α1\alpha\gg 1 most particles drift adiabatically along closed contours and are localized in the adiabatic approximation. The conductivity is then determined by a special class of trajectories, the "snake states", which percolate by scattering at the saddle points of B(r)B({\bf r}) where the adiabaticity of their motion breaks down. The external field also suppresses the diffusion by creating a percolation network of drifting cyclotron orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation, yielding an exponential drop of the conductivity at large Bˉ\bar{B}. In the regime α1\alpha\gg 1 the crossover between the snake-state percolation and the percolation of the drift orbits with increasing Bˉ\bar{B} has the character of a phase transition (localization of snake states) smeared exponentially weakly by non-adiabatic effects. The ac conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also discuss the nature of the quantum magnetooscillations. Detailed numerical studies confirm the analytical findings. The shape of the magnetoresistivity at α1\alpha\sim 1 is in good agreement with experimental data in the FQHE regime near ν=1/2\nu=1/2.Comment: 22 pages REVTEX, 14 figure

    The MeerKAT Fornax Survey

    Get PDF
    We present the science case and observations plan of the MeerKAT Fornax Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be carried out with the SKA precursor MeerKAT. Fornax is the second most massive cluster within 20 Mpc and the largest nearby cluster in the southern hemisphere. Its low X-ray luminosity makes it representative of the environment where most galaxies live and where substantial galaxy evolution takes place. Fornax's ongoing growth makes it an excellent laboratory for studying the assembly of clusters, the physics of gas accretion and stripping in galaxies falling in the cluster, and the connection between these processes and the neutral medium in the cosmic web. We will observe a region of 12 deg2 reaching a projected distance of 1.5 Mpc from the cluster centre. This will cover a wide range of environment density out to the outskirts of the cluster, where gas-rich in-falling groups are found. We will: study the HI morphology of resolved galaxies down to a column density of a few times 1e+19 cm−2 at a resolution of 1 kpc; measure the slope of the HI mass function down to M(HI) 5e+5 M(sun); and attempt to detect HI in the cosmic web reaching a column density of 1e+18 cm−2 at a resolution of 10 kpc

    International Pediatric ORL Group (IPOG) laryngomalacia consensus recommendations

    Get PDF
    Objective To provide recommendations for the comprehensive management of young infants who present with signs or symptoms concerning for laryngomalacia. Methods Expert opinion by the members of the International Pediatric Otolaryngology Group (IPOG). Results Consensus recommendations include initial care and triage recommendations for health care providers who commonly evaluate young infants with noisy breathing. The consensus statement also provides comprehensive care recommendations for otolaryngologists who manage young infants with laryngomalacia including: evaluation and treatment considerations for commonly debated issues in laryngomalacia, initial work-up of infants presenting with inspiratory stridor, treatment recommendations based on disease severity, management of the infant with feeding difficulties, post-surgical treatment management recommendations, and suggestions for acid suppression therapy. Conclusion Laryngomalacia care consensus recommendations are aimed at improving patient-centered care in infants with laryngomalacia
    corecore