1,106 research outputs found
Recommended from our members
Nonthermal Mg I Emission At 12 Micron From Procyon
We report on stellar Mg i emission at 12 mu m from alpha CMi (Procyon), a star slightly hotter than the Sun. Solar Mg i emission is well known, and its formation was successfully explained in detail by Carlsson et al. Here, for the first time, we successfully model and compare synthetic spectra of the emission lines at 12 mu m with observations of a star other than the Sun. The use of these lines as stellar diagnostics has been anticipated for 10 years or more (see, e.g., Carlsson et al.). We find that the model reproduces the observed emission in Procyon quite well. We expect that high-resolution spectrographs on 8-10 m telescopes will finally be able to exploit these new diagnostics.Swedish Research Councils VRSTINTNSF AST 03-07497Texas Advanced Research ProgramAstronom
Recommended from our members
The Abundances Of Polyacetylenes Toward CRL618
We present a mid-infrared high spectral resolution spectrum of CRL618 in the frequency ranges 778-784 and 1227-1249 cm(-1) (8.01-8.15 and 12.75-12.85 mu m) taken with the Texas Echelon-cross-Echelle Spectrograph (TEXES) and the Infrared Telescope Facility (IRTF). We have identified more than 170 rovibrational lines arising from C2H2, HCN, C4H2, and C6H2. We have found no unmistakable trace of C8H2. The line profiles display a complex structure suggesting the presence of polyacetylenes in several components of the circumstellar envelope (CSE). We derive total column densities of 2.5x10(17), 3.1x10(17), 2.1x10(17), 9.3x10(16) cm(-2), and less than or similar to 5x10(16) cm(-2) for HCN, C2H2, C4H2, C6H2, and C8H2, respectively. The observations indicate that both the rotational and vibrational temperatures in the innermost CSE depend on the molecule, varying from 100 to 350 K for the rotational temperatures and 100 to 500 K for the vibrational temperatures. Our results support a chemistry in the innermost CSE based on radical-neutral reactions triggered by the intense UV radiation field.Spanish Ministerio de Educacion y Ciencia ESP2004-665, AYA2003-2785"Comunidad de Madrid" government S-0505/ESP-0237European Community MCRTN-CT-2004-51230CSICCONACyT SEP-2004-C01-47090UNAMNSF AST-0708074Astronom
Ionized Gas in the Galactic Center: New Observations and Interpretation
We present new observations of the [Ne II] emission from the ionized gas in
Sgr A West with improved resolution and sensitivity. About half of the emission
comes from gas with kinematics indicating it is orbiting in a plane tipped
about 25\degree\ from the Galactic plane. This plane is consistent with that
derived previously for the circumnuclear molecular disk and the northern arm
and western arc ionized features. However, unlike most previous studies, we
conclude that the ionized gas is not moving along the ionized features, but on
more nearly circular paths. The observed speeds are close to, but probably
somewhat less than expected for orbital motions in the potential of the central
black hole and stars and have a small inward component. The spatial
distribution of the emission is well fitted by a spiral pattern. We discuss
possible physical explanations for the spatial distribution and kinematics of
the ionized gas, and conclude that both may be best explained by a one-armed
spiral density wave, which also accounts for both the observed low velocities
and the inward velocity component. We suggest that a density wave may result
from the precession of elliptical orbits in the potential of the black hole and
stellar mass distribution.Comment: 28 pages, 13 figures, ApJ in pres
R=100,000 Spectroscopy of Photodissociation Regions: H2 Rotational Lines in the Orion Bar
Ground state rotational lines of H2 are good temperature probes of moderately
hot (200-1000 K) gas. The low A-values of these lines result in low critical
densities while ensuring that the lines are optically thin. ISO observations of
H2 rotational lines in PDRs reveal large quantities of warm gas that are
difficult to explain via current models, but the spatial resolution of ISO does
not resolve the temperature structure of the warm gas. We present and discuss
high spatial resolution observations of H2 rotational line emission from the
Orion Bar.Comment: 4 pages, 1 figure, Proceedings of the ESO Workshop on High Resolution
Infrared Spectroscop
Ne II Observations of Gas Motions in Compact and Ultracompact H II Regions
We present high spatial and spectral resolution observations of 16 Galactic compact and ultracompact H II regions in the [Ne II] 12.8 mu m fine-structure line. The small thermal width of the neon line and the high dynamic range of the maps provide an unprecedented view of the kinematics of compact and ultracompact H II regions. These observations solidify an emerging picture of the structure of ultracompact H II regions suggested in our earlier studies of G29.96-0.02 and Mon R2 IRS 1; systematic surface flows, rather than turbulence or bulk expansion, dominate the gas motions in the H II regions. The observations show that almost all of the sources have significant (5-20 km s(-1)) velocity gradients and that most of the sources are limb-brightened. In many cases, the velocity pattern implies tangential flow along a dense shell of ionized gas. None of the observed sources clearly fits into the categories of filled expanding spheres, expanding shells, filled blister flows, or cometary H II regions formed by rapidly moving stars. Instead, the kinematics and morphologies of most of the sources lead to a picture of H II regions confined to the edges of cavities created by stellar wind ram pressure and flowing along the cavity surfaces. In sources where the radio continuum and [Ne II] morphologies agree, the majority of the ionic emission is blueshifted relative to nearby molecular gas. This is consistent with sources lying on the near side of their natal clouds being less affected by extinction and with gas motions being predominantly outward, as is expected for pressure-driven flows.NSF AST-0607312, NSF-0708074SOFIA USRA8500-98-008NYSTAR Faculty Development ProgramNASA NNG 04-GG92G, CAN-NCC5-679Lunar and Planetary InstituteAstronom
Detection of water vapor in the terrestrial planet forming region of a transition disk
We report a detection of water vapor in the protoplanetary disk around DoAr
44 with the Texas Echelon Cross Echelle Spectrograph --- a visitor instrument
on the Gemini north telescope. The DoAr 44 disk consists of an optically thick
inner ring and outer disk, separated by a dust-cleared 36 AU gap, and has
therefore been termed "pre-transitional". To date, this is the only disk with a
large inner gap known to harbor detectable quantities of warm (T=450 K) water
vapor. In this work, we detect and spectrally resolve three mid-infrared pure
rotational emission lines of water vapor from this source, and use the shapes
of the emission lines to constrain the location of the water vapor. We find
that the emission originates near 0.3 AU --- the inner disk region. This
characteristic region coincides with that inferred for both optically thick and
thin thermal infrared dust emission, as well as rovibrational CO emission. The
presence of water in the dust-depleted region implies substantial columns of
hydrogen (>10^{22} cm-2) as the water vapor would otherwise be destroyed by
photodissociation. Combined with the dust modeling, this column implies a
gas/small-dust ratio in the optically thin dusty region of >1000. These results
demonstrate that DoAr 44 has maintained similar physical and chemical
conditions to classical protoplanetary disks in its terrestrial-planet forming
regions, in spite of having formed a large gap.Comment: Paper accepted to the Astrophysical Journal Letter
- …