27 research outputs found

    IL-17RA-signaling modulates CD8+ T Cell survival and exhaustion during trypanosoma cruzi infection

    Get PDF
    The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-Apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.Fil: Tosello Boari, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Araujo Furlan, Cintia Liliana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Fiocca Vernengo, Facundo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Rodriguez, Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Ramello, María Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Amezcua Vesely, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Gorosito Serran, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Nuñez, Nicolås G.. Institute Curie; Francia. Institut National de la Santé et de la Recherche Médicale; FranciaFil: Richer, Wilfrid. Institut National de la Santé et de la Recherche Médicale; Francia. Institute Curie; FranciaFil: Piaggio, Eliane. Institut National de la Santé et de la Recherche Médicale; Francia. Institute Curie; FranciaFil: Montes, Carolina Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Gruppi, Adriana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Acosta Rodriguez, Eva Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentin

    High-Throughput Drug Screening Identifies Pazopanib and Clofilium Tosylate as Promising Treatments for Malignant Rhabdoid Tumors

    Get PDF
    Summary: Rhabdoid tumors (RTs) are aggressive tumors of early childhood characterized by SMARCB1 inactivation. Their poor prognosis highlights an urgent need to develop new therapies. Here, we performed a high-throughput screening of approved drugs and identified broad inhibitors of tyrosine kinase receptors (RTKs), including pazopanib, and the potassium channel inhibitor clofilium tosylate (CfT), as SMARCB1-dependent candidates. Pazopanib targets were identified as PDGFRα/ÎČ and FGFR2, which were the most highly expressed RTKs in a set of primary tumors. Combined genetic inhibition of both these RTKs only partially recapitulated the effect of pazopanib, emphasizing the requirement for broad inhibition. CfT perturbed protein metabolism and endoplasmic reticulum stress and, in combination with pazopanib, induced apoptosis of RT cells in vitro. In vivo, reduction of tumor growth by pazopanib was enhanced in combination with CfT, matching the efficiency of conventional chemotherapy. These results strongly support testing pazopanib/CfT combination therapy in future clinical trials for RTs. : Rhabdoid tumors (RTs) are aggressive pediatric tumors characterized by SMARCB1 inactivation. Chauvin et al. identify two SMARCB1-dependent targeted therapies for RT: pazopanib, which inhibits PDGFR and FGFR2, and the potassium channel inhibitor clofilium tosylate, which induces endoplasmic reticulum stress. Combining both drugs induces cell apoptosis and reduces PDX tumor growth. Keywords: rhabdoid tumors, SMARCB1, pazopanib, clofilium tosylate, high-throughput drug screening, tyrosine kinase inhibitor

    IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During Trypanosoma cruzi Infection

    Get PDF
    The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi

    Analyses multi-OMIQUES Ă  cellule unique de la biologie des Tregs dans le cancer

    No full text
    Les cellules T rĂ©gulatrices (Treg) FOXP3+ jouent un rĂŽle important dans l'inhibition de l'immunitĂ© contre le cancer, mais suppriment Ă©galement l'auto-immunitĂ©. Le dĂ©veloppement de thĂ©rapies ciblant les Tregs dans le cancer nĂ©cessite une caractĂ©risation plus approfondie des populations de Tregs spĂ©cifiques aux tumeurs et des mĂ©canismes qui conduisent Ă  l'accumulation de Tregs dans les tumeurs. Pour explorer ces questions, nous avons rĂ©alisĂ© un sĂ©quençage Ă  cellule unique de l'ARN, du rĂ©cepteur des cellules T (TCR) et des rĂ©gions accessibles de la chromatine (ATAC) sur des cellules T CD4+ conventionnelles (Tconv) et des Tregs triĂ©s Ă  partir de sang, de ganglions lymphatiques drainant les tumeurs (GL) et de tumeurs provenant des mĂȘmes patients atteints de cancer du poumon non Ă  petites cellules (CPNPC). Cela a rĂ©vĂ©lĂ© une grande diversitĂ© parmi les populations de Tregs et de Tconvs provenant des diffĂ©rents tissus. Nous identifions Ă©galement une population spĂ©cifique de Tregs fonctionnels, associĂ©s Ă  la tumeur et prĂ©sentant une expansion clonale (FT-Treg) qui s'accumule dans les tumeurs et qui est enrichie en Tregs prĂ©sentant une signature d'activation rĂ©cente du TCR. Les gĂšnes diffĂ©rentiellement exprimĂ©s entre les FT-Tregs et toutes les autres populations ont mis en Ă©vidence un ensemble de gĂšnes spĂ©cifiquement enrichis dans les FT-Tregs qui peuvent ĂȘtre utilisĂ©s pour cibler les FT-Tregs tout en prĂ©servant les Tregs dans les tissus sains. Cette stratĂ©gie thĂ©rapeutique devrait rĂ©duire le risque d'auto-immunitĂ© indĂ©sirable. Un brevet protĂ©geant ces rĂ©sultats a Ă©tĂ© cĂ©dĂ© sous licence Ă  Egle therapeutics, une nouvelle start up liĂ©e Ă  notre Ă©quipe. Nous dĂ©crivons Ă©galement des modĂšles d'expansion clonale spĂ©cifiques aux tissus des diffĂ©rentes sous-populations de Tregs et de Tconvs effecteurs ; la migration entre la tumeur et les GLs de clones de Tregs et de Tconvs partageant les mĂȘmes TCR, et la transition entre diffĂ©rents Ă©tats de groupes de cellules T spĂ©cifiques, incluant la conversion Tconv/Treg. Les rĂ©sultats de scATAC-seq permettent de mieux dĂ©finir les diffĂ©rents groupes de cellules T et d'identifier une nouvelle population de Tregs "progĂ©niteurs" enrichie dans le GL, qui alimente potentiellement les Tregs tissulaires et les cellules T prĂ©sentant des caractĂ©ristiques folliculaires (Tfh). Dans l'ensemble, ces rĂ©sultats enrichissent nos connaissances de base sur la diversitĂ© cellulaire, transcriptomique et Ă©pigĂ©nĂ©tique des cellules T CD4+ dans les tumeurs et en particulier dans les GLs, et fournissent de nouveaux candidats pour le ciblage thĂ©rapeutique des Tregs tumoraux chez les patients.FOXP3+ regulatory T (Treg) cells play an important role inhibiting cancer immunity, but also suppress autoimmunity. Developing Treg targeted therapies in cancer requires a deeper characterization of tumor-specific Treg populations and the mechanisms driving tumor Treg accumulation. To explore these questions, we performed single cell RNA, T cell receptor (TCR), and assay for transposase accessible chromatin (ATAC) sequencing on sorted conventional CD4+ T cells (Tconv) and Tregs from matched blood, tumor-draining lymph nodes (TDLN) and tumors of patients with non-small cell lung cancer (NSCLC). This revealed a high diversity among Treg and Tconv populations from the different tissues. Also, we identify a specific population of clonally expanded functional tumor-associated Tregs (FT-Treg) which accumulates in tumors and is enriched in Tregs with a signature of recent TCR activation. Differentially expressed genes between FT-Tregs and all other populations identified a set of genes selectively upregulated in FT-Tregs which can be used to deplete FT-Tregs while preserving Tregs in healthy tissues. This therapeutic strategy should reduce the risk of unwanted autoimunity. A patent protecting these results has been licensed to Egle therapeutics, a novel spin-off biotech from our team. Also, we describe tissue-specific patterns of clonal expansion of the different effector Treg and Tconv subpopulations; the migration between tumor and TDLN of Treg and Tconv clones with shared TCRs, and the state transition of specific T cell clusters, including Tconv/Treg conversion. scATAC-seq results allow a better definition of the different T cell clusters and identify a novel "progenitor like" Treg population enriched in the TDLN, which potentially fuels both tissue Tregs and T follicular helper (Tfh)-like cells. Overall, these results enrich our basic knowledge of the cellular, transcriptomic and epigenetic diversity of CD4+ T cells in tumors and particularly in the TDLNs, and provides novel cues for the therapeutic targeting of tumor-Tregs in patients

    Active dispersal by wild Triatoma infestans in the Bolivian Andes

    No full text
    International audienceTriatoma infestans is the main vector of Chagas disease and target of control programmes in the Southern Cone countries. So far Bolivia is the only country where true T. infestans wild foci are documented. The dispersal ability for wild T. infestans was studied at microgeographical scale in Bolivian Andes, to assess the possibility for wild populations to actively recolonize insecticide-treated villages. Nine microsatellite loci were used to detect the extent of gene flow between neighbouring collecting sites. The detection of restricted gene flow between close but distinct sylvatic sites supports the hypothesis that wild T. infestans does not disperse by flying at high altitude (2 750 m asl). It gradually disperses over small distances by walking within a 'patch' of continuous land cover. The genetic differentiation detected between sylvatic and domestic populations suggests a limited short-term role of wild insects in the process of recolonization of insecticide-treated houses in the Andes

    Active dispersal by wild Triatoma infestans in the Bolivian Andes

    No full text
    Triatoma infestans is the main vector of Chagas disease and target of control programmes in the Southern Cone countries. So far Bolivia is the only country where true T. infestans wild foci are documented. The dispersal ability for wild T. infestans was studied at microgeographical scale in Bolivian Andes, to assess the possibility for wild populations to actively recolonize insecticide-treated villages. Nine microsatellite loci were used to detect the extent of gene flow between neighbouring collecting sites. The detection of restricted gene flow between close but distinct sylvatic sites supports the hypothesis that wild T. infestans does not disperse by flying at high altitude (2 750 m asl). It gradually disperses over small distances by walking within a 'patch' of continuous land cover. The genetic differentiation detected between sylvatic and domestic populations suggests a limited short-term role of wild insects in the process of recolonization of insecticide-treated houses in the Andes

    Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer

    No full text
    International audienceAlthough immune checkpoint inhibitors have shown improvement in survival in comparison to chemotherapy in urothelial bladder cancer, many patients still fail to respond to these treatments and actual efforts are made to identify predictive factors of response to immunotherapy. Understanding the tumor-intrinsic molecular basis, like oncogenic pathways conditioning the presence or absence of tumor-infiltrating T cells (TILs), should provide a new rationale for improved anti-tumor immune therapies. In this study, we found that urothelial bladder cancer from human samples bearing PIK3CA gene mutations was significantly associated with lower expression of a defined immune gene signature, compared to unmutated ones. We identified a reduced 10-gene immune gene signature that discriminates muscle-invasive bladder cancer (MIBC) samples according to immune infiltration and PIK3CA mutation. Using a humanized mouse model, we observed that BKM120, a pan-PI3K inhibitor, significantly inhibited the growth of a human bladder cancer cell line bearing a PIK3CA mutation, associated to increased immune cell infiltration (hCD45+). Using qRT-PCR, we also found an increase in the expression of chemokines and immune genes in PIK3CA-mutated tumors from mice treated with BKM120, reflecting an active immune infiltrate in comparison to untreated ones. Moreover, the addition of BKM120 rendered PIK3CA-mutated tumors sensitive to PD-1 blockade. Our results provide a relevant rationale for combination strategies of PI3K inhibitors with immune checkpoint inhibitors to overcome resistance to immune checkpoint inhibitors
    corecore