29,325 research outputs found
Novel Fiber Design for Wideband Conversion and Amplification in Multimode Fibers
We propose an operating principle to achieve broadband and highly tunable
mode conversion and amplification exploiting inter-modal four wave mixing in a
multimode fiber. A bandwidth of 30 nanometers is demonstrated by properly
designing a simple step-index silica fiber.Comment: Ecoc conference 201
Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish
Background: In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh) signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish.
Results: Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway. Moreover, we show that the Igu/DZIP1 protein, previously implicated in the modulation of Gli activity in zebrafish, also localizes to the primary cilium and is required for its proper formation.
Conclusion: Our findings demonstrate a conserved role of the primary cilium in mediating Hedgehog signalling activity across the vertebrate phylum and validate the use of the zebrafish as a representative model for the in vivo analysis of vertebrate Hedgehog signalling
Procedure B: A multisegment training selection and proportion estimation procedure for processing LANDSAT agricultural data
There are no author-identified significant results in this report
Dispersion of tracer particles in a compressible flow
The turbulent diffusion of Lagrangian tracer particles has been studied in a
flow on the surface of a large tank of water and in computer simulations. The
effect of flow compressibility is captured in images of particle fields. The
velocity field of floating particles has a divergence, whose probability
density function shows exponential tails. Also studied is the motion of pairs
and triplets of particles. The mean square separation is fitted to
the scaling form ~ t^alpha, and in contrast with the
Richardson-Kolmogorov prediction, an extended range with a reduced scaling
exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly
deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure
Exact Study of the Effect of Level Statistics in Ultrasmall Superconducting Grains
The reduced BCS model that is commonly used for ultrasmall superconducting
grains has an exact solution worked out long ago by Richardson in the context
of nuclear physics. We use it to check the quality of previous treatments of
this model, and to investigate the effect of level statistics on pairing
correlations. We find that the ground state energies are on average somewhat
lower for systems with non-uniform than uniform level spacings, but both have
an equally smooth crossover from the bulk to the few-electron regime. In the
latter, statistical fluctuations in ground state energies strongly depend on
the grain's electron number parity.Comment: 4 pages, 3 eps figs, RevTe
Improvement in the geopotential derived from satellite and surface data (GEM 7 and 8)
A refinement was obtained in the earth's gravitational field using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution (Goddard Earth Model 7) includes 64,000 laser measurements taken on 7 satellites during the international satellite geodesy experiment (ISAGEX) program. The GEM 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution GEM 8 combines the same satellite data as in GEM 7 with surface gravimetry over 39% of the earth. The GEM 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulation of the geoidal surface computed by GEM 7 has an accuracy of about 3m (rms). The overall accuracy of the geoid estimated by GEM 8 is estimated to be about 4-1/4m (rms), an improvement of almost 1m over previous solutions
A method for spatial deconvolution of spectra
A method for spatial deconvolution of spectra is presented. It follows the
same fundamental principles as the ``MCS image deconvolution algorithm''
(Magain, Courbin, Sohy, 1998) and uses information contained in the spectrum of
a reference Point Spread Function (PSF) to spatially deconvolve spectra of very
blended sources. An improved resolution rather than an infinite one is aimed
at, overcoming the well known problem of ``deconvolution artefacts''. As in the
MCS algorithm, the data are decomposed into a sum of analytical point sources
and a numerically deconvolved background, so that the spectrum of extended
sources in the immediate vicinity of bright point sources may be accurately
extracted and sharpened. The algorithm has been tested on simulated data
including seeing variation as a function of wavelength and atmospheric
refraction. It is shown that the spectra of severely blended point sources can
be resolved while fully preserving the spectrophotometric properties of the
data. Extended objects ``hidden'' by bright point sources (up to 4-5 magnitudes
brighter) can be accurately recovered as well, provided the data have a
sufficiently high total signal-to-noise ratio (200-300 per spectral resolution
element). Such spectra are relatively easy to obtain, even down to faint
magnitudes, within a few hours of integration time with 10m class telescopes.Comment: 18 pages, 6 postscript figures, in press in Ap
Goddard earth models (5 and 6)
A comprehensive earth model has been developed that consists of two complementary gravitational fields and center-of-mass locations for 134 tracking stations on the earth's surface. One gravitational field is derived solely from satellite tracking data. This data on 27 satellite orbits is the most extensive used for such a solution. A second solution uses this data with 13,400 simultaneous events from satellite camera observations and surface gravimetric anomalies. The satellite-only solution as a whole is accurate to about 4.5 milligals as judged by the surface gravity data. The majority of the station coordinates are accurate to better than 10 meters as judged by independent results from geodetic surveys and by Doppler tracking of both distant space probes and near earth orbits
The case for a wet, warm climate on early Mars
Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism
- …