12 research outputs found
Kinetic modelling of acyl glucuronide and glucoside reactivity and development of structure-property relationships.
Acyl glucuronide metabolites have been implicated in the toxicity of several carboxylic acid-containing drugs, and the rate of their degradation via intramolecular transacylation and hydrolysis has been associated with the degree of protein adduct formation. Although not yet proven, the formation of protein adducts in vivo - and subsequent downstream effects - has been proposed as a mechanism of toxicity for carboxylic acid-containing xenobiotics capable of forming acyl glucuronides. A structurally-related series of metabolites, the acyl glucosides, have also been shown to undergo similar degradation reactions and consequently the potential to display a similar mode of toxicity. Here we report detailed kinetic models of each transacylation and hydrolysis reaction for a series of phenylacetic acid acyl glucuronides and their analogous acyl glucosides. Differences in reactivity were observed for the individual transacylation steps between the compound series; our findings suggest that the charged carboxylate ion and neutral hydroxyl group in the glucuronide and glucoside conjugates, respectively, are responsible for these differences. The transacylation reaction was modelled using density functional theory and the calculated activation energy for this reaction showed a close correlation with the degradation rate of the 1-β anomer. Comparison of optimised geometries between the two series of conjugates revealed differences in hydrogen bonding which may further explain the differences in reactivity observed. Together, these models may find application in drug discovery for prediction of acyl glucuronide and glucoside metabolite behaviour
The Neurokinin 1 Receptor Antagonist, Ezlopitant, Reduces Appetitive Responding for Sucrose and Ethanol
Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers
Recommended from our members
Metabolic phenotype modulation by caloric restriction in a lifelong dog study
Modeling aging and age-related pathologies
presents a substantial analytical challenge given the complexity
of gene−environment influences and interactions operating on an
individual. A top-down systems approach is used to model the
effects of lifelong caloric restriction, which is known to extend life
span in several animal models. The metabolic phenotypes of
caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n
= 24) Labrador Retriever dogs were investigated by use of
orthogonal projection to latent structures discriminant analysis
(OPLS-DA) to model both generic and age-specific responses to
caloric restriction from the 1H NMR blood serum profiles of
young and older dogs. Three aging metabolic phenotypes were
resolved: (i) an aging metabolic phenotype independent of diet,
characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. 1H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes
Metabolic Phenotype Modulation by Caloric Restriction in a Lifelong Dog Study
Modeling aging and age-related pathologies
presents a substantial
analytical challenge given the complexity of gene–environment
influences and interactions operating on an individual. A top-down
systems approach is used to model the effects of lifelong caloric
restriction, which is known to extend life span in several animal
models. The metabolic phenotypes of caloric-restricted (CR; <i>n</i> = 24) and pair-housed control-fed (CF; <i>n</i> = 24) Labrador Retriever dogs were investigated by use of orthogonal
projection to latent structures discriminant analysis (OPLS-DA) to
model both generic and age-specific responses to caloric restriction
from the <sup>1</sup>H NMR blood serum profiles of young and older
dogs. Three aging metabolic phenotypes were resolved: (i) an aging
metabolic phenotype independent of diet, characterized by high levels
of glutamine, creatinine, methylamine, dimethylamine, trimethylamine
N-oxide, and glycerophosphocholine and decreasing levels of glycine,
aspartate, creatine and citrate indicative of metabolic changes associated
largely with muscle mass; (ii) an aging metabolic phenotype specific
to CR dogs that consisted of relatively lower levels of glucose, acetate,
choline, and tyrosine and relatively higher serum levels of phosphocholine
with increased age in the CR population; (iii) an aging metabolic
phenotype specific to CF dogs including lower levels of liproprotein
fatty acyl groups and allantoin and relatively higher levels of formate
with increased age in the CF population. There was no diet metabotype
that consistently differentiated the CF and CR dogs irrespective of
age. Glucose consistently discriminated between feeding regimes in
dogs (≥312 weeks), being relatively lower in the CR group.
However, it was observed that creatine and amino acids (valine, leucine,
isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312
weeks), suggestive of differences in energy source utilization. <sup>1</sup>H NMR spectroscopic analysis of longitudinal serum profiles
enabled an unbiased evaluation of the metabolic markers modulated
by a lifetime of caloric restriction and showed differences in the
metabolic phenotype of aging due to caloric restriction, which contributes
to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA
provided a framework such that significant metabolites relating to
life extension could be differentiated and integrated with aging processes
Recommended from our members
Colonization-induced host-gut microbial metabolic interaction
The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism
Coordination of adjacent domains mediates TACC3-ch-TOG-clathrin assembly and mitotic spindle binding
Acomplex of transforming acidic coiled-coil protein 3 (TACC3), colonic and hepatic tumor overexpressed gene (ch-TOG), and clathrin has been implicated in mitotic spindle assembly and in the stabilization of kinetochore fibers by cross-linking microtubules. It is unclear how this complex binds microtubules and how the proteins in the complex interact with one another. TACC3 and clathrin have each been proposed to be the spindle recruitment factor. We have mapped the interactions within the complex and show that TACC3 and clathrin were interdependent for spindle recruitment, having to interact in order for either to be recruited to the spindle. The N-terminal domain of clathrin and the TACC domain of TACC3 in tandem made a microtubule interaction surface, coordinated by TACC3–clathrin binding. A dileucine motif and Aurora A–phosphorylated serine 558 on TACC3 bound to the “ankle” of clathrin. The other interaction within the complex involved a stutter in the TACC3 coiled-coil and a proposed novel sixth TOG domain in ch-TOG, which was required for microtubule localization of ch-TOG but not TACC3–clathrin
Induction of multiple reinstatements of ethanol- and sucrose-seeking behavior in Long-Evans rats by the alpha-2 adrenoreceptor antagonist yohimbine
Rationale Developing models to efficiently explore the mechanisms by which stress can mediate reinstatement of drug-seeking behavior is crucial to the development of new pharmacotherapies for alcohol use disorders. Objectives We examined the effects of multiple reinstatement sessions using the pharmacological stressor, yohimbine, in ethanol- and sucrose-seeking rats in order to develop a more efficient model of stress-induced reinstatement. Methods Long–Evans rats were trained to self-administer 10% ethanol with a sucrose-fading procedure, 20% ethanol without a sucrose-fading procedure, or 5% sucrose in 30-min operant self-administration sessions, followed by extinction training. After reaching extinction criteria, the animals were tested once per week with yohimbine vehicle and yohimbine (2 mg/kg), respectively, 30 min prior to the reinstatement sessions or blood collection. Levels of reinstatement and plasma corticosterone (CORT) were determined each week for four consecutive weeks. Results Yohimbine induced reinstatement of ethanol- and sucrose-seeking in each of the 4 weeks. Interestingly, the magnitude of the reinstatement decreased for the 10% ethanol group after the first reinstatement session but remained stable for the 20% ethanol group trained without sucrose. Plasma CORT levels in response to injection of both vehicle and yohimbine were significantly higher in the ethanol-trained animals compared to sucrose controls. Conclusions The stable reinstatement in the 20% ethanol group supports the use of this training procedure in studies using within-subject designs with multiple yohimbine reinstatement test sessions. Additionally, these results indicate that the hormonal response to stressors can be altered following extinction from self-administration of relatively modest amounts of ethanol