5 research outputs found

    Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans.

    Get PDF
    The ferrous iron and 2-oxoglutarate (2OG) dependent oxygenases catalyse two electron oxidation reactions by coupling the oxidation of substrate to the oxidative decarboxylation of 2OG, giving succinate and carbon dioxide coproducts. The evidence available on the level of incorporation of one atom from dioxygen into succinate is inconclusive. Here, we demonstrate that five members of the 2OG oxygenase family, AlkB from&nbsp;Escherichia coli, anthocyanidin synthase and flavonol synthase from&nbsp;Arabidopsis thaliana, and prolyl hydroxylase domain enzyme 2 and factor inhibiting hypoxia-inducible factor-1 from&nbsp;Homo sapiens&nbsp;all incorporate a single oxygen atom, almost exclusively derived from dioxygen, into the succinate co-product.<br /

    The C-4 stereochemistry of leucocyanidin substrates for anthocyanidin synthase affects product selectivity

    No full text
    Anthocyanidin synthase (ANS), an iron(II) and 2-oxoglutarate (2OG) dependent oxygenase, catalyses the penultimate step in anthocyanin biosynthesis by oxidation of the 2R,3S,4S-cis-leucoanthocyanidins. It has been believed that in vivo the products of ANS are the anthocyanidins. However, in vitro studies on ANS using optically active cis- and trans-leucocyanidin substrates identified cyanidin as only a minor product; instead both quercetin and dihydroquercetin are products with the distribution being dependent on the C-4 stereochemistry of the leucocyanidin substrates

    UV-triggered affinity capture identifies interactions between the Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) and antimalarial agents in live parasitized cells

    No full text
    A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615

    Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review

    Get PDF
    Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3β,5α,6β-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs
    corecore