52 research outputs found

    Time-delayed 2-Pulse Studies of MALDI Matrix Ionization Mechanisms

    Full text link

    Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes

    Get PDF
    We have measured the intermolecular dissociation energiesD0of supersonically cooled 1-naphthol(1NpOH) complexes with solvents S = furan, thiophene, 2,5-dimethylfuran, and tetrahydrofuran. Thenaphthol OH forms non-classical H-bonds with the aromaticπ-electrons of furan, thiophene, and2,5-dimethylfuran and a classical H-bond with the tetrahydrofuran O atom. Using the stimulated-emission pumping resonant two-photon ionization method, the ground-stateD0(S0) values werebracketed as 21.8±0.3 kJ/mol for furan, 26.6±0.6 kJ/mol for thiophene, 36.5±2.3 kJ/mol for2,5-dimethylfuran, and 37.6±1.3 kJ/mol for tetrahydrofuran. The dispersion-corrected density func-tional theory methods B97-D3, B3LYP-D3 (using the def2-TZVPP basis set), andωB97X-D [usingthe 6-311++G(d,p) basis set] predict that the H-bonded (edge) isomers are more stable than the faceisomers bound by dispersion; experimentally, we only observe edge isomers. We compare the cal-culated and experimentalD0values and extend the comparison to the previously measured 1NpOHcomplexes with cyclopropane, benzene, water, alcohols, and cyclic ethers. The dissociation energiesof the nonclassically H-bonded complexes increase roughly linearly with the average polarizabilityof the solvent, ̄α(S). By contrast, theD0values of the classically H-bonded complexes are larger,increase more rapidly at low ̄α(S), but saturate for large ̄α(S). The calculatedD0(S0) values forthe cyclopropane, benzene, furan, and tetrahydrofuran complexes agree with experiment to within1 kJ/mol and those of thiophene and 2,5-dimethylfuran are∼3 kJ/mol smaller than experiment. TheB3LYP-D3 calculatedD0values exhibit the lowest mean absolute deviation (MAD) relative toexperiment (MAD = 1.7 kJ/mol), and the B97-D3 andωB97X-D MADs are 2.2 and 2.6 kJ/mol,respectively

    Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Get PDF
    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.Peer reviewe

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Ion formation mechanisms in UV-MALDI.

    No full text
    Matrix Assisted Laser Desorption/Ionization (MALDI) is a very widely used analytical method, but has been developed in a highly empirical manner. Deeper understanding of ionization mechanisms could help to design better methods and improve interpretation of mass spectra. This review summarizes current mechanistic thinking, with emphasis on the most common MALDI variant using ultraviolet laser excitation. A two-step framework is gaining acceptance as a useful model for many MALDI experiments. The steps are primary ionization during or shortly after the laser pulse, followed by secondary reactions in the expanding plume of desorbed material. Primary ionization in UV-MALDI remains somewhat controversial, the two main approaches are the cluster and pooling/photoionization models. Secondary events are less contentious, ion-molecule reaction thermodynamics and kinetics are often invoked, but details differ. To the extent that local thermal equilibrium is approached in the plume, the mass spectra may be straightforwardly interpreted in terms of charge transfer thermodynamics

    Photoionization pathways and free electrons in UV-MALDI.

    No full text
    The recently developed model for primary and secondary UV-MALDI ion formation (Knochenmuss, R. J. Mass Spectrom. 2002, 37, 867-877. Knochenmuss, R. Anal. Chem. 2003, 75, 2199.) is applied to questions regarding photoionization pathways and electron versus negative ion production. Two-photon ionization of the matrix in direct contact with analyte is possible under some circumstances (Kinsel, G.; Knochenmuss, R.; Setz, P.; Land, C. M.; Goh, S.-K.; Archibong, E. F.; Hardesty, J. H.; Marynik, D. J. Mass Spectrom. 2002, 37, 1131-1140.), and is added to the model. When analyte is present in large mole ratios (such as when matrix suppression is desired), this effect contributes modestly to the ion yield. Generally, matrix exciton pooling remains dominant. The interfacial layer of thin samples on a metal substrate may also be ionizable in a 2-photon process. A mechanism is proposed, and the correspondingly modified model gives excellent agreement with electron emission versus laser intensity data. Capture in, or escape of low-energy electrons from a thick sample (or on a nonmetallic substrate) is also examined. Because the mean free path for MALDI electrons in a solid matrix is on the order of 10 nm, below such depths, any electrons generated are captured to form negative ions. Only a surface layer can emit free electrons. This surface emission effect is also well reproduced by the model, up to a laser intensity limit caused by surface charging. This charging phenomenon is investigated and illustrated by molecular dynamics calculations

    Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences.

    No full text
    The matrix suppression effect (MSE) can lead to high-quality MALDI mass spectra: strong analyte signals and weak or negligible matrix background peaks. Experiment and theory suggest that MSE should be widespread and, therefore, generally applicable to measurement of low molecular weight (LMW) substances. These are otherwise impractical with MALDI due to interference from matrix. Appropriate conditions for MSE were investigated and tested on a variety of LMW substances. Straightforward and semiautomated interpretation was possible for 87.7% of these. Another 3.5% gave poor MSE due to sodium cationization rather than protonation of the analyte, but interpretation was possible. MALDI imaging shows that MSE varies significantly across a typical sample. Selective data accumulation could further increase the utility of the method. Samples containing more than one analyte were also studied. Analyte-analyte suppression was not found to be excessive, and moderately abundant minority species can be adequately detected

    Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes.

    No full text
    A molecular dynamics model of UV-MALDI including ionization processes is presented. In addition to the previously described breathing sphere approach developed for simulation of laser ablation/desorption of molecular systems, it includes radiative and nonradiative decay, exciton hopping, two pooling processes, and electron capture. The results confirm the main conclusions of the continuum model of Knochenmuss, Anal. Chem. 2003, 75, 2199, but provide a much more detailed description of the interaction between ablation/desorption and ionization processes in the critical early time regime. Both desorption and ablation regimes generate free ions, and yields are in accordance with experiment. The first molecular ions are emitted at high velocities shortly before neutral desorption begins, because of surface charging caused by electron escape from the top of the sample. Later ions are entrained and thermalized in the plume of neutral molecules and clusters. Clusters are found to be stable on a nanosecond time scale, so the ions in them will be released only slowly, if at all. Exciton hopping rate and the mean radius for ion recombination are shown to be key parameters that can have a significant effect on net ion yield
    corecore