1,946 research outputs found

    A Microeconometric Chronicle of the Green Revolution

    Get PDF

    Capital-Labor Utilization and Substitution in Punjab Agriculture

    Get PDF

    Data Appendix for a Microeconometric Chronicle of the Green Revolution

    Get PDF

    Investigation of the Micromechanics of the Microbond Test

    Get PDF
    The microbond test is a method which is sometimes used for measuring interfacial shear strength. In the analysis of the data it is often assumed that the interfacial shear stress is constant and thus, by implication, that the strain in the fibre along the embedded fibre decreases linearly from the point of entry to the point of exit. In this paper the results of conventional microbond tests and simulated microbond tests performed under a Raman microscope on a Kevlar-49/epoxy system are reported. The conventionally performed tests show that the calculated interfacial shear strength for this system is approximately 16 MPa regardless of the position of the supporting knife edges. The strain distribution along the fibre during simulated microbond tests was studied as a function of knife edge position, interfacial area and level of load by means of Raman spectroscopy. It was found that the interfacial shear stress was not constant, as is frequently assumed, but was strongly dependent upon distance through the droplet, knife-edge position and applied load. At low loads the strain was a maximum at the point where the fibre entered the droplet and then dropped off sharply through the embedded length. This effect was enhanced when the knife-edge separation was reduced. The variation of the shape of the stress distribution was similar to that predicted by a linear finite element analysis. At higher load levels the onset of failure in the region closest to the point where the fibre entered the droplet could be observed

    Fertility and female status: Barbados, 1960--1970.

    Get PDF
    Dept. of Geography. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1974 .D29. Source: Masters Abstracts International, Volume: 40-07, page: . Thesis (M.A.)--University of Windsor (Canada), 1974

    Angiogenic Effect of Bioactive Borate Glass Microfibers and Beads in the Hairless Mouse

    Get PDF
    The purpose of this project was to investigate the angiogenic mechanism of bioactive borate glass for soft tissue repair in a \u27hairless\u27 SKH1 mouse model. Subcutaneous microvascular responses to bioactive glass microfibers (45S5, 13-93B3, and 13-93B3Cu) and bioactive glass beads (13-93, 13-93B3, and 13-93B3Cu) were assessed via: noninvasive imaging of skin microvasculature; histomorphometry of microvascular densities; and quantitative PCR measurements of mRNA expression of VEGF and FGF-2 cytokines. Live imaging via dorsal skin windows showed the formation at two weeks of a halo-like structure infused with microvessels surrounding implanted borate-based 13-93B3 and 13-93B3Cu glass beads, a response not observed with silicate-based 13-93 glass beads. Quantitative histomorphometry of tissues implanted with plugs of 45S5, 13-93B3, and 13-93B3Cu glass microfibers revealed microvascular densities that were 1.6-, 2.3-, and 2.7-times higher, respectively, than the sham control values whereas 13-93, 13-93B3, and 13-93B3Cu glass beads caused the microvascular density to increase 1.3-, 1.6-, and 2.5-fold, respectively, relative to sham controls. Quantitative PCR measurements indicate a marginally significant increased expression of VEGF mRNA in tissues with 13-93B3Cu glass beads, an outcome that supported the hypothesis that copper-doped borate glass could promote VEGF expression followed by angiogenesis for enhanced wound healing
    corecore