8 research outputs found

    High definition 3D telemedicine: The next frontier?

    Get PDF
    Evidence from the literature indicates that the degree of immersion often referred to as the "sense of being there" experienced by clinicians and patients is a factor in the success of tele-health installations. High definition and 3D telemedicine offers a compelling mechanism to achieve a sense of immersion and contribute to an enhanced quality of use. This article surveys HD3D trials in tele-health and concludes that the way HD3D is integrated into telemedicine depends on the clinical, organisational and technological context. In some settings real time HD3D is not so desirable whereas asynchronous transmission of HD3D images and videos is highly desirable. © 2012 The authors and IOS Press

    Canine Brachycephaly is Associated with a Retrotransposon-Mediated Missplicing of SMOC2

    Get PDF
    In morphological terms, “form” is used to describe an object’s shape and size. In dogs, facial form is stunningly diverse. Facial retrusion, the proximodistal shortening of the snout and widening of the hard palate is common to brachycephalic dogs and is a welfare concern, as the incidence of respiratory distress and ocular trauma observed in this class of dogs is highly correlated with their skull form. Progress to identify the molecular underpinnings of facial retrusion is limited to association of a missense mutation in BMP3 among small brachycephalic dogs. Here, we used morphometrics of skull isosurfaces derived from 374 pedigree and mixed-breed dogs to dissect the genetics of skull form. Through deconvolution of facial forms, we identified quantitative trait loci that are responsible for canine facial shapes and sizes. Our novel insights include recognition that the FGF4 retrogene insertion, previously associated with appendicular chondrodysplasia, also reduces neurocranium size. Focusing on facial shape, we resolved a quantitative trait locus on canine chromosome 1 to a 188-kb critical interval that encompasses SMOC2. An intronic, transposable element within SMOC2 promotes the utilization of cryptic splice sites, causing its incorporation into transcripts, and drastically reduces SMOC2 gene expression in brachycephalic dogs. SMOC2 disruption affects the facial skeleton in a dose-dependent manner. The size effects of the associated SMOC2 haplotype are profound, accounting for 36% of facial length variation in the dogs we tested. Our data bring new focus to SMOC2 by highlighting its clinical implications in both human and veterinary medicine

    Development of a robotic and computer vision method to assess foam quality in sparkling wines

    No full text
    Quality assessment of food products and beverages might be performed by the human senses of smell, taste, sound and touch. Likewise, sparkling wines and carbonated beverages are fundamentally assessed by sensory evaluation. Computer vision is an emerging technique that has been applied in the food industry to objectively assist quality and process control. However, publications describing the application of this novel technology to carbonated beverages are scarce, as the methodology requires tailored techniques to address the presence of carbonation and foamability. Here we present a robotic pourer (FIZZeyeRobot), which normalizes the variability of foam and bubble development during pouring into a vessel. It is coupled with video capture to assess several parameters of foam quality, including foamability (the ability of the foam to form) drainability (the ability of the foam to resist drainage) and bubble count and allometry. The foam parameters investigated were analyzed in combination to the wines scores, chemical parameters obtained from laboratory analysis and manual measurements for validation purposes. Results showed that higher quality scores from trained panelists were positively correlated with foam stability and negatively correlated with the velocity of foam dissipation and the height of the collar. Significant correlations were observed between the wine quality measurements of total protein, titratable acidity, pH and foam expansion. The percentage of the wine in the foam was found to promote the formation of smaller bubbles and to reduce foamability, while drainability was negatively correlated to foam stability and positively correlated with the duration of the collar. Finally, wines were grouped according to their foam and bubble characteristics, quality scores and chemical parameters. The technique developed in this study objectively assessed foam characteristics of sparkling wines using image analysis whilst maintaining a cost-effective, fast, repeatable and reliable robotic method. Relationships between wine composition, bubble and foam parameters obtained automatically, might assist in unraveling factors contributing to wine quality and directions for further research

    Development of a robotic and computer vision method to assess foam quality in sparkling wines

    No full text
    Quality assessment of food products and beverages might be performed by the human senses of smell, taste, sound and touch. Likewise, sparkling wines and carbonated beverages are fundamentally assessed by sensory evaluation. Computer vision is an emerging technique that has been applied in the food industry to objectively assist quality and process control. However, publications describing the application of this novel technology to carbonated beverages are scarce, as the methodology requires tailored techniques to address the presence of carbonation and foamability. Here we present a robotic pourer (FIZZeyeRobot), which normalizes the variability of foam and bubble development during pouring into a vessel. It is coupled with video capture to assess several parameters of foam quality, including foamability (the ability of the foam to form) drainability (the ability of the foam to resist drainage) and bubble count and allometry. The foam parameters investigated were analyzed in combination to the wines scores, chemical parameters obtained from laboratory analysis and manual measurements for validation purposes. Results showed that higher quality scores from trained panelists were positively correlated with foam stability and negatively correlated with the velocity of foam dissipation and the height of the collar. Significant correlations were observed between the wine quality measurements of total protein, titratable acidity, pH and foam expansion. The percentage of the wine in the foam was found to promote the formation of smaller bubbles and to reduce foamability, while drainability was negatively correlated to foam stability and positively correlated with the duration of the collar. Finally, wines were grouped according to their foam and bubble characteristics, quality scores and chemical parameters. The technique developed in this study objectively assessed foam characteristics of sparkling wines using image analysis whilst maintaining a cost-effective, fast, repeatable and reliable robotic method. Relationships between wine composition, bubble and foam parameters obtained automatically, might assist in unraveling factors contributing to wine quality and directions for further research
    corecore