271 research outputs found

    Evolution of Western Palaearctic oak gallwasp communities

    Get PDF

    The torsional waveguide viscosity probe: Design and anomalous behavior

    Get PDF
    This paper is concerned with the design of viscosity sensors based on a torsional waveguide. The advantages of using guided wave attenuation instead of speed for viscosity estimation are established. The effects of probe material, dimensions and operating frequency on viscosity measurement are discussed in the context of a requirement to match the measured attenuation to the range of viscosity values that are required to be measured, given the constraints on measurability imposed by the overall signal and noise conditions. A prototype probe is shown to work well with Newtonian liquids but to appreciably underestimate the viscosities of polymeric oils; these anomalies are explained quantitatively on the basis of a model of intramolecular relaxation. The probe was unsuccessful when applied to slurries, and a basic explanation is given

    Modelling the backscatter from spherical cavities in a solid matrix: can an effective medium layer model mimic the scattering response?

    Get PDF
    Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still “layer-like” and an effective medium model was a good approximation for the scattering behaviour

    Simulation of incoherent and coherent backscattered wave fields from cavities in a solid matrix

    Get PDF
    This paper reports a study of the backscattered ultrasonic signal from a solid layer containing spherical cavities, to determine the conditions in which an effective medium model is a valid description of the response. The work is motivated by the need to model the response of porous composite materials for ultrasonic non-destructive evaluation (NDE) techniques. The numerical simulation predicts the response of a layer containing cavities at a single set of random locations, and compares it to the predicted response from a homogeneous layer with ensemble-averaged material properties (effective medium model). The study investigates the conditions in which the coherent (ensembleaveraged) response is obtained even from a single configuration of scatterers. Simulations are carried out for a range of cavity sizes and volume fractions. The deviation of the response from effective medium behavior is modeled, along with the trends as a function of cavity radius, volume fraction, and frequency, in order to establish an acceptability criterion for application of an effective medium model

    Acoustic scattering by a spherical obstacle: modification to the analytical long-wavelength solution for the zero-order coefficient

    Get PDF
    Classical long wavelength approximate solutions to the scattering of acoustic waves by a spherical liquid particle suspended in a liquid (an emulsion) show small but significant differences from full solutions at very low kca (typically kca 0.1, where kc is the compressional wavenumber and a the particle radius. These differences may be significant in the context of dispersed particle size estimates based on compression wave attenuation measurements. This paper gives an explanation of how these differences arise from approximations based on the significance of terms in the modulus of the complex zero-order partial wave coefficient, A0. It is proposed that a more accurate approximation results from considering the terms in the real and imaginary parts of the coefficient, separately

    Ultrasonic wave propagation in concentrated slurries - the modelling problem

    Get PDF
    The suspended particle size distribution in slurries can, in principle, be estimated from measured ultrasonic wave attenuation across a frequency band in the 10s of MHz range. The procedure requires a computational model of wave propagation which incorporates scattering phenomena. These models fail at high particle concentrations due to hydrodynamic effects which they do not incorporate. This work seeks an effective viscosity and density for the medium surrounding the particles, which would enable the scattering model predictions to match experimental data for high solids loading. It is found that the required viscosity model has unphysical characteristics leading to the conclusion that a simple effective medium modification to the ECAH/LB is not possible. The paper confirms the successful results which can be obtained using core-shell scattering models, for smaller particles than had previously been studied, and outlines modifications to these which would permit rapid computation of sufficient stability to support fast particle sizing procedures

    Emergence of the coherent reflected field for a single realisation of spherical scatterer locations in a solid matrix

    Get PDF
    The acoustic field reflected from a region containing spherical scatterers is most often estimated by use of the coherent field; that is, the field resulting from the summed scattered fields from the scatterers, averaged over all possible configurations of scatterer locations. It is this ensemble-averaged coherent field which is equivalent to the field reflected from a homogeneous medium with properties which can be derived mathematically using ensemble-averaging techniques. Such properties include the effective density, and the effective wavenumber, which can be derived from multiple scattering theories, or by other homogenisation methods. Experimentally, although ensemble-averaging can be effected in practice in fluid systems due to the motion of the scatterers during the measurement time-scale, measurements in solid materials have fixed locations of scatterers. Averaging can only be achieved by using "large" sample areas, multiple samples or measurements in different locations, or "large" receiver areas. However, in the context of NDE applications we are interested in the field resulting from a specific region of material, rather than the average over a large region. Our study addresses the question of when the coherent field (resulting from averaging over many scatterer configurations) can be used as an accurate description of the field reflected by a region of scatterers at fixed locations. In this paper we present results of simulations of the scattered reflected field from a region of solid material containing spherical cavities. Simulations of single realisations of scatterer locations are compared with the coherent field, to demonstrate the validity or otherwise of the use of the coherent field to describe the response of a particular configuration of scatterers. © Published under licence by IOP Publishing Ltd

    Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum).

    Get PDF
    Previous studies of highly branched mutants in pea (rms1-rms5), Arabidopsis thaliana (max1-max4), petunia (dad1-dad3), and rice (d3, d10, htd1/d17, d14, d27) identified strigolactones or their derivates (SLs), as shoot branching inhibitors. This recent discovery offers the possibility of using SLs to regulate branching commercially, for example, in chrysanthemum, an important cut flower crop. To investigate this option, SL physiology and molecular biology were studied in chrysanthemum (Dendranthema grandiflorum), focusing on the CCD8/MAX4/DAD1/RMS1/D10 gene. Our results suggest that, as has been proposed for Arabidopsis, the ability of SLs to inhibit bud activity depends on the presence of a competing auxin source. The chrysanthemum SL biosynthesis gene, CCD8 was cloned, and found to be regulated in a similar, but not identical way to known CCD8s. Expression analyses revealed that DgCCD8 is predominantly expressed in roots and stems, and is up-regulated by exogenous auxin. Exogenous SL can down-regulate DgCCD8 expression, but this effect can be overridden by apical auxin application. This study provides evidence that SLs are promising candidates to alter the shoot branching habit of chrysanthemum

    Modelling ultrasonic array signals in multilayer anisotropic materials using the angular spectrum decomposition of plane wave responses

    Get PDF
    Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite. © Published under licence by IOP Publishing Ltd

    The torsional waveguide viscosity probe: design and anomalous behavior

    Get PDF
    This paper is concerned with the design of viscosity sensors based on a torsional waveguide. The advantages of using guided wave attenuation instead of speed for viscosity estimation are established. The effects of probe material, dimensions and operating frequency on viscosity measurement are discussed in the context of a requirement to match the measured attenuation to the range of viscosity values that are required to be measured, given the constraints on measurability imposed by the overall signal and noise conditions. A prototype probe is shown to work well with Newtonian liquids but to appreciably underestimate the viscosities of polymeric oils; these anomalies are explained quantitatively on the basis of a model of intramolecular relaxation. The probe was unsuccessful when applied to slurries, and a basic explanation is given
    corecore