132 research outputs found
The specificity and robustness of long-distance connections in weighted, interareal connectomes
Brain areas' functional repertoires are shaped by their incoming and outgoing
structural connections. In empirically measured networks, most connections are
short, reflecting spatial and energetic constraints. Nonetheless, a small
number of connections span long distances, consistent with the notion that the
functionality of these connections must outweigh their cost. While the precise
function of these long-distance connections is not known, the leading
hypothesis is that they act to reduce the topological distance between brain
areas and facilitate efficient interareal communication. However, this
hypothesis implies a non-specificity of long-distance connections that we
contend is unlikely. Instead, we propose that long-distance connections serve
to diversify brain areas' inputs and outputs, thereby promoting complex
dynamics. Through analysis of five interareal network datasets, we show that
long-distance connections play only minor roles in reducing average interareal
topological distance. In contrast, areas' long-distance and short-range
neighbors exhibit marked differences in their connectivity profiles, suggesting
that long-distance connections enhance dissimilarity between regional inputs
and outputs. Next, we show that -- in isolation -- areas' long-distance
connectivity profiles exhibit non-random levels of similarity, suggesting that
the communication pathways formed by long connections exhibit redundancies that
may serve to promote robustness. Finally, we use a linearization of
Wilson-Cowan dynamics to simulate the covariance structure of neural activity
and show that in the absence of long-distance connections, a common measure of
functional diversity decreases. Collectively, our findings suggest that
long-distance connections are necessary for supporting diverse and complex
brain dynamics.Comment: 18 pages, 8 figure
Age-Related Changes in Human Anatomical and Functional Brain Networks
Thesis (Ph.D.) - Indiana University, Psychological and Brain Sciences, 2015i) The first component characterizes age-related changes in specific connections. We find that functional connections within and between intrinsic connectivity networks (ICNs) follow distinct lifespan trajectories. We further characterize these changes in terms of each ICN’s “modularity” and find that most ICNs become less modular (i.e. less segregated) with age. In anatomical networks we find that hub regions are disproportionately affected by age and become less efficiently connected to the rest of the brain. Finally, we find that, with age stronger functional connections are supported by longer (multi-step) anatomical pathways for communication. ii) The second component is concerned with characterizing age-related changes in the boundaries of ICNs. To this end we used a multi-layer variant of modularity maximization to decompose networks into modules at different organizational scales, which we find exhibit scale-specific trends with age. At coarse scales, for example, we find that modules become more segregated whereas modules defined at finer scales become less segregated. We also find that module composition changes with age, and specific areas associated with memory change their module allegiance with age. iii) In the final component we use generative models to uncover wiring rules for the anatomical brain networks. Modeling network growth as a spatial penalty combined with homophily, we find that we can generate synthetic networks with many of the same properties as real-world brain networks. Fitting this model to individuals, we show that the parameter governing the severity of the spatial penalty weakens monotonically with age and that the overall ability to reproduce realistic connectomes for older individuals suffers. These results suggest that, with age, additional constraints may play an important role in shaping the topology of brain structural networks
Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks
We investigate the relationship of resting-state fMRI functional connectivity
estimated over long periods of time with time-varying functional connectivity
estimated over shorter time intervals. We show that using Pearson's correlation
to estimate functional connectivity implies that the range of fluctuations of
functional connections over short time scales is subject to statistical
constraints imposed by their connectivity strength over longer scales. We
present a method for estimating time-varying functional connectivity that is
designed to mitigate this issue and allows us to identify episodes where
functional connections are unexpectedly strong or weak. We apply this method to
data recorded from participants, and show that the number of
unexpectedly strong/weak connections fluctuates over time, and that these
variations coincide with intermittent periods of high and low modularity in
time-varying functional connectivity. We also find that during periods of
relative quiescence regions associated with default mode network tend to join
communities with attentional, control, and primary sensory systems. In
contrast, during periods where many connections are unexpectedly strong/weak,
default mode regions dissociate and form distinct modules. Finally, we go on to
show that, while all functional connections can at times manifest stronger
(more positively correlated) or weaker (more negatively correlated) than
expected, a small number of connections, mostly within the visual and
somatomotor networks, do so a disproportional number of times. Our statistical
approach allows the detection of functional connections that fluctuate more or
less than expected based on their long-time averages and may be of use in
future studies characterizing the spatio-temporal patterns of time-varying
functional connectivityComment: 47 Pages, 8 Figures, 4 Supplementary Figure
- …