386 research outputs found

    Reconsidering Early HIV Treatment and Supervised Treatment Interruptions

    Get PDF
    Another study casts doubt on the value of early treatment and treatment interruptions. What are the implications of this study for our understanding of HIV pathogenesis, treatment, and vaccine development

    Immediate Cytotoxicity But Not Degranulation Distinguishes Effector and Memory Subsets of CD8+ T Cells

    Get PDF
    CD8+ T cells play a central role in the resolution and containment of viral infections. A key effector function of CD8+ T cells is their cytolytic activity toward infected cells. Here, we studied the regulation of cytolytic activity in naive, effector, and central versus effector memory CD8+ T cells specific for the same glycoprotein-derived epitope of lymphocytic choriomeningitis virus. Our results show that the kinetics of degranulation, assessed by a novel flow cytometric based assay, were identical in effector and both subsets of memory CD8+ T cells, but absent in naive CD8+ T cells. However, immediate cytolytic activity was most pronounced in effector T cells, low in effector memory T cells, and absent in central memory T cells, correlating with the respective levels of cytolytic effector molecules present in lytic granules. These results indicate that an inherent program of degranulation is a feature of antigen-experienced cells as opposed to naive CD8+ T cells and that the ability of CD8+ T cells to induce target cell apoptosis/death is dependent on granule protein content rather than on the act of degranulation itself. Furthermore, these results provide a potential mechanism by which central memory CD8+ T cell–mediated death of antigen-presenting cells within the lymph node is avoided

    Monitoring CD27 expression to evaluate Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo.

    Get PDF
    The level of bacterial activity is only poorly defined during asymptomatic Mycobacterium tuberculosis (MTB) infection. The objective was to study the capacity of a new biomarker, the expression of the T cell maturation marker CD27 on MTB-specific CD4 T cells, to identify active tuberculosis (TB) disease in subjects from a MTB and HIV endemic region. The frequency and CD27 expression of circulating MTB-specific CD4 T cells was determined in 96 study participants after stimulation with purified protein derivative (PPD) using intracellular cytokine staining for IFNgamma (IFNγ). Subjects were then stratified by their TB and HIV status. Within PPD responders, a CD27(-) phenotype was associated with active TB in HIV(-) (p = 0.0003) and HIV(+) (p = 0.057) subjects, respectively. In addition, loss of CD27 expression preceded development of active TB in one HIV seroconverter. Interestingly, in contrast to HIV(-) subjects, MTB-specific CD4 T cell populations from HIV(+) TB-asymptomatic subjects were often dominated by CD27(-) cells. These data indicate that down-regulation of CD27 on MTB-specific CD4 T cell could be used as a biomarker of active TB, potentially preceding clinical TB disease. Furthermore, these data are consistent with the hypothesis that late, chronic HIV infection is frequently associated with increased mycobacterial activity in vivo. The analysis of T cell maturation and activation markers might thus be a useful tool to monitor TB disease progression

    Chronic HIV-1 Infection Frequently Fails to Protect against Superinfection

    Get PDF
    Reports of HIV-1 superinfection (re-infection) have demonstrated that the immune response generated against one strain of HIV-1 does not always protect against other strains. However, studies to determine the incidence of HIV-1 superinfection have yielded conflicting results. Furthermore, few studies have attempted to identify superinfection cases occurring more than a year after initial infection, a time when HIV-1-specific immune responses would be most likely to have developed. We screened a cohort of high-risk Kenyan women for HIV-1 superinfection by comparing partial gag and envelope sequences over a 5-y period beginning at primary infection. Among 36 individuals, we detected seven cases of superinfection, including cases in which both viruses belonged to the same HIV-1 subtype, subtype A. In five of these cases, the superinfecting strain was detected in only one of the two genome regions examined, suggesting that recombination frequently occurs following HIV-1 superinfection. In addition, we found that superinfection occurred throughout the course of the first infection: during acute infection in two cases, between 1–2 y after infection in three cases, and as late as 5 y after infection in two cases. Our results indicate that superinfection commonly occurs after the immune response against the initial infection has had time to develop and mature. Implications from HIV-1 superinfection cases, in which natural re-exposure leads to re-infection, will need to be considered in developing strategies for eliciting protective immunity to HIV-1

    Apoptotic Killing of HIV-1–Infected Macrophages Is Subverted by the Viral Envelope Glycoprotein

    Get PDF
    Viruses have evolved strategies to protect infected cells from apoptotic clearance. We present evidence that HIV-1 possesses a mechanism to protect infected macrophages from the apoptotic effects of the death ligand TRAIL (tumor necrosis factor–related apoptosis-inducing ligand). In HIV-1–infected macrophages, the viral envelope protein induced macrophage colony-stimulating factor (M-CSF). This pro-survival cytokine downregulated the TRAIL receptor TRAIL-R1/DR4 and upregulated the anti-apoptotic genes Bfl-1 and Mcl-1. Inhibition of M-CSF activity or silencing of Bfl-1 and Mcl-1 rendered infected macrophages highly susceptible to TRAIL. The anti-cancer agent Imatinib inhibited M-CSF receptor activation and restored the apoptotic sensitivity of HIV-1–infected macrophages, suggesting a novel strategy to curtail viral persistence in the macrophage reservoir

    Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells

    Get PDF
    Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against pathogens such as human immunodeficiency virus (HIV)-1. At the same time, HIV-1 replication is strongly enhanced in DC–T cell clusters, potentially undermining this process. We found that immature CD123+ plasmacytoid DCs (PDCs) and CD11c+ myeloid DCs (MDCs) were susceptible to both a CCR5- and a CXCR4-using HIV-1 isolate in vitro and were able to efficiently transfer that infection to autologous CD4+ T cells. Soon after HIV-1 exposure, both PDCs and MDCs were able to transfer the virus to T cells in the absence of a productive infection. However, once a productive infection was established in the DCs, newly synthesized virus was predominantly spread to T cells. HIV-1 exposure of the MDCs and PDCs did not inhibit their ability to present cytomegalovirus (CMV) antigens and activate CMV-specific memory T cells. As a result, both PDCs and MDCs preferentially transmitted HIV-1 to the responding CMV antigen–specific CD4+ T cells rather than to nonresponding T cells. This suggests that the induction of antigen-specific T cell responses by DCs, a process crucial to immune defense, can lead to preferential HIV-1 infection and the deletion of responding CD4+ T cells

    Vaccination and Timing Influence SIV Immune Escape Viral Dynamics In Vivo

    Get PDF
    CD8+ cytotoxic T lymphocytes (CTL) can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods for following CTL escape and reversion are, however, insensitive to minor viral quasispecies. We developed sensitive quantitative real-time PCR assays to track the viral load of SIV Gag164–172 KP9 wild-type (WT) and escape mutant (EM) variants in pigtail macaques. Rapid outgrowth of EM virus occurs during the first few weeks of infection. However, the rate of escape plateaued soon after, revealing a prolonged persistence of WT viremia not detectable by standard cloning and sequencing methods. The rate of escape of KP9 correlated with levels of vaccine-primed KP9-specific CD8+ T cells present at that time. Similarly, when non-KP9 responder (lacking the restricting Mane-A*10 allele) macaques were infected with SHIVmn229 stock containing a mixture of EM and WT virus, rapid reversion to WT was observed over the first 2 weeks following infection. However, the rate of reversion to WT slowed dramatically over the first month of infection. The serial quantitation of escape mutant viruses evolving during SIV infection shows that rapid dynamics of immune escape and reversion can be observed in early infection, particularly when CD8 T cells are primed by vaccination. However, these early rapid rates of escape and reversion are transient and followed by a significant slowing in these rates later during infection, highlighting that the rate of escape is significantly influenced by the timing of its occurrence

    Antigenic specificity of antibody-dependent cell-mediated cytotoxicity directed against human immunodeficiency virus in antibody-positive sera

    Get PDF
    Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope glycoproteins gp160, gp120, and gp41 or gag proteins p55, p40, p24, and p17) in infected lymphoblastoid cell lines as demonstrated by radioimmunoprecipitation and syncytia formation with c8166 cells. Killer cell-mediated, HIV-specific ADCC was found in sera from HIV-seropositive but not HIV-seronegative hemophiliacs. This HIV-specific response was directed against envelope glycoprotein but was completely absent against target cells expressing the HIV gag proteins. The ADCC directed against gp160 was present at serum dilutions up to 1/316,000. There was no correlation between serum ADCC titer and the stage of HIV-related illness as determined by T-helper-cell numbers. These experiments clearly implicated gp160 as the target antigen of HIV-specific ADCC activity following natural infection. Vaccines which stimulate antibodies directed against gp160, which are capable of mediating ADCC against infected cells, could be important for protection against infection by cell-associated virus

    Detection of major histocompatibility complex class I-restricted, HIV-specific cytotoxic T lymphocytes in the blood of infected hemophiliacs

    Get PDF
    Major histocompatibility (MHC)-restricted, human immunodeficiency virus type one (HIV-1)-specific, cytotoxic T lymphocytes (CTLs) were detected in the peripheral blood mononuclear cells (PBMCs) of HIV-1-infected individuals. Using a system of autologous B and T lymphoblastoid cell lines infected with recombinant vaccinia vectors (VVs) expressing HIV-1 gene products, we were able to detect HIV-1-specific cytolytic responses in the PBMCs of 88% of HIV-1-seropositive hemophiliac patients in the absence of in vitro stimulation. These cytolytic responses were directed against both HIV-1 envelope and gag gene products. The responses were resistant to natural killer (NK) cell depletion and were inhibited by monoclonal antibodies (MoAbs) to the T cell receptor, CD8 surface antigens, and MHC class I antigens, suggesting a classical MHC class I restricted, virus-specific CTL response
    corecore