51 research outputs found

    Alemtuzumab-induced remission of multiple sclerosis-associated uveitis

    Get PDF
    Purpose The purpose of the study was to report a case of multiple sclerosis (MS)-associated uveitis refractory to conventional immunosuppressants, with subsequent remission following treatment with alemtuzumab. Methods Case report Patient was treated with intravenous alemtuzumab, a lymphocyte depleting anti-CD52 monoclonal antibody that has recently been approved for use in relapsing MS. Results A 17-year-old female presented with bilateral optic neuritis and subsequently bilateral intermediate uveitis and secondary macular oedema. She was diagnosed with active relapsing MS for which she received treatment with alemtuzumab. The intraocular inflammation previously refractory to conventional immunosuppressants responded to alemtuzumab, inducing remission. Conclusions To our knowledge, this is the first such report of alemtuzumab treatment in MS-associated ocular inflammatory disease and may demonstrate a potential utility for this drug in related conditions

    The prosequence of procaricain forms an α-helical domain that prevents access to the substrate-binding cleft

    Get PDF
    AbstractBackground Cysteine proteases are involved in a variety of cellular processes including cartilage degradation in arthritis, the progression of Alzheimer's disease and cancer invasion: these enzymes are therefore of immense biological importance. Caricain is the most basic of the cysteine proteases found in the latex of Carica papaya. It is a member of the papain superfamily and is homologous to other plant and animal cysteine proteases. Caricain is naturally expressed as an inactive zymogen called procaricain. The inactive form of the protease contains an inhibitory proregion which consists of an additional 106 N-terminal amino acids; the proregion is removed upon activation.Results The crystal structure of procaricain has been refined to 3.2 å resolution; the final model consists of three non-crystallographically related molecules. The proregion of caricain forms a separate globular domain which binds to the C-terminal domain of mature caricain. The proregion also contains an extended polypeptide chain which runs through the substrate-binding cleft, in the opposite direction to that of the substrate, and connects to the N terminus of the mature region. The mature region does not undergo any conformational change on activation.Conclusions We conclude that the rate-limiting step in the in vitro activation of procaricain is the dissociation of the prodomain, which is then followed by proteolytic cleavage of the extended polypeptide chain of the proregion. The prodomain provides a stable scaffold which may facilitate the folding of the C-terminal lobe of procaricain

    Structure of internalin C from Listeria monocytogenes

    Full text link

    Structural insights into the loss of catalytic competence in pectate lyase activity at low pH

    Get PDF
    AbstractPectate lyase, a family 1 polysaccharide lyase, catalyses cleavage of the α-1,4 linkage of the polysaccharide homogalacturonan via an anti β-elimination reaction. In the Michaelis complex two calcium ions bind between the C6 carboxylate of the d-galacturonate residue and enzyme aspartates at the active centre (+1 subsite), they withdraw electrons acidifying the C5 proton facilitating its abstraction by the catalytic arginine. Here we show that activity is lost at low pH because protonation of aspartates results in the loss of the two catalytic calcium-ions causing a profound failure to correctly organise the Michaelis complex

    FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    Get PDF
    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I)

    Enzyme Sequence and Its Relationship to Hyperbaric Stability of Artificial and Natural Fish Lactate Dehydrogenases

    Get PDF
    The cDNAs of lactate dehydrogenase b (LDH-b) from both deep-sea and shallow living fish species, Corphaenoides armatus and Gadus morhua respectively, have been isolated, sequenced and their encoded products overproduced as recombinant enzymes in E. coli. The proteins were characterised in terms of their kinetic and physical properties and their ability to withstand high pressures. Although the two proteins are very similar in terms of their primary structure, only 21 differences at the amino acid level exist between them, the enzyme from the deep-sea species has a significantly increased tolerance to pressure and a higher thermostability. It was possible to investigate whether the changes in the N-terminal or C-terminal regions played a greater role in barophilic adaptation by the construction of two chimeric enzymes by use of a common restriction site within the cDNAs. One of these hybrids was found to have even greater pressure stability than the recombinant enzyme from the deep-living fish species. It was possible to conclude that the major adaptive changes to pressure tolerance must be located in the N-terminal region of the protein. The types of changes that are found and their spatial location within the protein structure are discussed. An analysis of the kinetic parameters of the enzymes suggests that there is clearly a trade off between Km and kcat values, which likely reflects the necessity of the deep-sea enzyme to operate at low temperatures

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Structural and Functional Insights into the Pilotin-Secretin Complex of the Type II Secretion System

    Get PDF
    Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four α-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four α-helix bundles. The architecture can be described as the insertion of one α-helical hairpin into a second open α-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo

    Structure of PduT, a trimeric bacterial microcompartment protein with a 4Fe–4S cluster-binding site

    No full text
    Propanediol metabolism in Citrobacter freundii occurs within a metabolosome, a subcellular proteinaceous bacterial microcompartment. The propanediol-utilization (Pdu) microcompartment shell is constructed from thousands of hexagonal-shaped protein complexes made from seven different types of protein subunit. Here, the structure of the bacterial microcompartment protein PduT, which has a tandem structural repeat within the subunit and forms trimers with pseudo-hexagonal symmetry, is reported. This trimeric assembly forms a flat approximately hexagonally shaped disc with a central pore that is suitable for a 4Fe-4S cluster. The essentially cubic shaped 4Fe-4S cluster conforms to the threefold symmetry of the trimer with one free iron, the role of which could be to supply electrons to an associated microcompartment enzyme, PduS
    corecore