6,243 research outputs found

    A review of studies of the systemic control of livestock insect parasites

    Get PDF
    n/

    A review of studies of the systemic control of livestock insect parasites

    Get PDF
    n/

    An Age Difference of 2 Gyr between a Metal-Rich and a Metal-Poor Globular Cluster

    Full text link
    Globular clusters trace the formation history of the spheroidal components of both our Galaxy and others, which represent the bulk of star formation over the history of the universe. They also exhibit a range of metallicities, with metal-poor clusters dominating the stellar halo of the Galaxy, and higher metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and later swallowed along with their original host galaxies, and which were formed in situ. Here we present an age determination of the metal-rich globular cluster 47 Tucanae by fitting the properties of the cluster white dwarf population, which implies an absolute age of 9.9 (0.7) Gyr at 95% confidence. This is about 2.0 Gyr younger than inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than the metal-poor halo clusters like NGC 6397.Comment: Main Article: 10 pages, 4 figures; Supplementary Info 15 pages, 5 figures. Nature, Aug 1, 201

    Variable stars in Terzan 5: additional evidence of multi-age and multi-iron stellar populations

    Get PDF
    Terzan 5 is a complex stellar system in the Galactic bulge, harboring stellar populations with very different iron content ({\Delta}[Fe/H] ~1 dex) and with ages differing by several Gyrs. Here we present an investigation of its variable stars. We report on the discovery and characterization of three RR Lyrae stars. For these newly discovered RR Lyrae and for six Miras of known periods we provide radial velocity and chemical abundances from spectra acquired with X-SHOOTER at the VLT. We find that the three RR Lyrae and the three short period Miras (P<300 d) have radial velocity consistent with being Terzan 5 members. They have sub-solar iron abundances and enhanced [{\alpha}/Fe], well matching the age and abundance patterns of the 12 Gyr metal-poor stellar populations of Terzan 5. Only one, out of the three long period (P>300 d) Miras analyzed in this study, has a radial velocity consistent with being Terzan 5 member. Its super-solar iron abundance and solar-scaled [{\alpha}/Fe] nicely match the chemical properties of the metal rich stellar population of Terzan 5 and its derived mass nicely agrees with being several Gyrs younger than the short period Miras. This young variable is an additional proof of the surprising young sub-population discovered in Terzan 5.Comment: 20 pages, 4 figures, in press on the Ap

    An Abundance Analysis for Five Red Horizontal Branch Stars in the Extremely Metal Rich Globular Cluster NGC 6553

    Get PDF
    We provide a high dispersion line-by-line abundance analysis of five red HB stars in the extremely metal rich galactic globular cluster NGC 6553. These red HB stars are significantly hotter than the very cool stars near the tip of the giant branch in such a metal rich globular cluster and hence their spectra are much more amenable to an abundance analysis than would be the case for red giants. We find that the mean [Fe/H] for NGC 6553 is -0.16 dex, comparable to the mean abundance in the galactic bulge found by McWilliam & Rich (1994) and considerably higher than that obtained from an analysis of two red giants in this cluster by Barbuy etal (1999). The relative abundance for the best determined alpha process element (Ca) indicates an excess of alpha process elements of about a factor of two. The metallicity of NGC 6553 reaches the average of the Galactic bulge and of the solar neighborhood.Comment: 29 pages, 6 figures, accepted for publication in the Ap

    Halos of Spiral Galaxies. III. Metallicity Distributions

    Full text link
    (Abriged) We report results of a campaign to image the stellar populations in the halos of highly inclined spiral galaxies, with the fields roughly 10 kpc (projected) from the nuclei. We use the F814W (I) and F606W (V) filters in the Wide Field Planetary Camera 2, on board the Hubble Space telescope. Extended halo populations are detected in all galaxies. The color-magnitude diagrams appear to be completely dominated by giant-branch stars, with no evidence for the presence of young stellar populations in any of the fields. We find that the metallicity distribution functions are dominated by metal-rich populations, with a tail extending toward the metal poor end. To first order, the overall shapes of the metallicity distribution functions are similar to what is predicted by simple, single-component model of chemical evolution with the effective yields increasing with galaxy luminosity. However, metallicity distributions significantly narrower than the simple model are observed for a few of the most luminous galaxies in the sample. It appears clear that more luminous spiral galaxies also have more metal-rich stellar halos. The increasingly significant departures from the closed-box model for the more luminous galaxies indicate that a parameter in addition to a single yield is required to describe chemical evolution. This parameter, which could be related to gas infall or outflow either in situ or in progenitor dwarf galaxies that later merge to form the stellar halo, tends to act to make the metallicity distributions narrower at high metallicity.Comment: 20 pages, 8 figures (ApJ, in press
    • …
    corecore