84,432 research outputs found

    Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff

    Get PDF
    We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincar\'e-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern---the "framid"---does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries---and possibly rotational ones---and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and---if they exist---supersolids. A third, "extra-ordinary", possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincar\'e group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the "galileids", for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2→22\to 2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E2E^2, E4E^4, and E6E^6. Similarly the energy momentum tensor in the ground state is "trivial" for framids (ρ+p=0\rho +p=0), normal for solids (ρ+p>0\rho+p>0) and even inhomogenous for galileids.Comment: 58 pages, 1 table, 1 free cut-and-paste project for rainy days in Appendi

    The Composite Twin Higgs scenario

    Get PDF
    Based on an explicit model, we propose and discuss the generic features of a possible implementation of the Twin Higgs program in the context of composite Higgs models. We find that the Twin Higgs quadratic divergence cancellation argument can be uplifted to a genuine protection of the Higgs potential, based on symmetries and selection rules, but only under certain conditions which are not fulfilled in some of the existing models. We also find that a viable scenario, not plagued by a massless Twin Photon, can be obtained by not gauging the Twin Hypercharge and taking this as the only source of Twin Symmetry breaking at a very high scale.Comment: 19 pages; v2: typos and notation corrected, results unchanged; v3: published versio

    Prospects for direct detection of dark matter in an effective theory approach

    Full text link
    We perform the first comprehensive analysis of the prospects for direct detection of dark matter with future ton-scale detectors in the general 11-dimensional effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. The theory includes 8 momentum and velocity dependent dark matter-nucleon interaction operators, besides the familiar spin-independent and spin-dependent operators. From a variegated sample of 27 benchmark points selected in the parameter space of the theory, we simulate independent sets of synthetic data for ton-scale Germanium and Xenon detectors. From the synthetic data, we then extract the marginal posterior probability density functions and the profile likelihoods of the model parameters. The associated Bayesian credible regions and frequentist confidence intervals allow us to assess the prospects for direct detection of dark matter at the 27 benchmark points. First, we analyze the data assuming the knowledge of the correct dark matter nucleon-interaction type, as it is commonly done for the familiar spin-independent and spin-dependent interactions. Then, we analyze the simulations extracting the dark matter-nucleon interaction type from the data directly, in contrast to standard analyses. This second approach requires an extensive exploration of the full 11-dimensional parameter space of the dark matter-nucleon effective theory. Interestingly, we identify 5 scenarios where the dark matter mass and the dark matter-nucleon interaction type can be reconstructed from the data simultaneously. We stress the importance of extracting the dark matter nucleon-interaction type from the data directly, discussing the main challenges found addressing this complex 11-dimensional problem.Comment: 23 pages, 7 figures, replaced to match the published versio

    Asymptotic behavior and existence of solutions for singular elliptic equations

    Get PDF
    We study the asymptotic behavior, as Îł\gamma tends to infinity, of solutions for the homogeneous Dirichlet problem associated to singular semilinear elliptic equations whose model is −Δu=f(x)uγ  in Ω, -\Delta u=\frac{f(x)}{u^\gamma}\,\text{ in }\Omega, where Ω\Omega is an open, bounded subset of \RN and ff is a bounded function. We deal with the existence of a limit equation under two different assumptions on ff: either strictly positive on every compactly contained subset of Ω\Omega or only nonnegative. Through this study we deduce optimal existence results of positive solutions for the homogeneous Dirichlet problem associated to −Δv+∣∇v∣2v=f  in Ω. -\Delta v + \frac{|\nabla v|^2}{v} = f\,\text{ in }\Omega. Comment: 31 page
    • 

    corecore