8,363 research outputs found

    Advanced expander test bed program

    Get PDF
    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992

    Disentangling the Structure-Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs

    Get PDF
    In the context of developing efficient anticancer therapies aimed at eradicating any sort of tumors, G-quadruplexes represent excellent targets. Small molecules able to interact with G-quadruplexes can interfere with cell pathways specific of tumors and common to all cancers. Naphthalene diimides (NDIs) are among the most promising, putative anticancer G-quadruplextargeting drugs, due to their ability to simultaneously target multiple G-quadruplexes and their strong, selective in vitro and in vivo anticancer activity. Here, all the available biophysical, biological, and structural data concerning NDIs targeting Gquadruplexes were systematically analyzed. Structure−activity correlations were obtained by analyzing biophysical data of their interactions with G-quadruplex targets and control duplex structures, in parallel to biological data concerning the antiproliferative activity of NDIs on cancer and normal cells. In addition, NDI binding modes to G-quadruplexes were discussed in consideration of the structures and properties of NDIs by in-depth analysis of the available structural models of G-quadruplex/NDI complexes

    Tuning the polymorphism of the anti-VEGF G-rich V7t1 aptamer by covalent dimeric constructs

    Get PDF
    In the optimization process of nucleic acid aptamers, increased affinity and/or activity are generally searched by exploring structural analogues of the lead compound. In many cases, promising results have been obtained by dimerization of the starting aptamer. Here we studied a focused set of covalent dimers of the G-quadruplex (G4) forming anti-Vascular Endothelial Growth Factor (VEGF) V7t1 aptamer with the aim of identifying derivatives with improved properties. In the design of these covalent dimers, connecting linkers of different chemical nature, maintaining the same polarity along the strand or inverting it, have been introduced. These dimeric aptamers have been investigated using several biophysical techniques to disclose the conformational behavior, molecularity and thermal stability of the structures formed in different buffers. This in-depth biophysical characterization revealed the formation of stable G4 structures, however in some cases accompanied by alternative tridimensional arrangements. When tested for their VEGF165 binding and antiproliferative activity in comparison with V7t1, these covalent dimers showed slightly lower binding ability to the target protein but similar if not slightly higher antiproliferative activity on human breast adenocarcinoma MCF-7 cells. These results provide useful information for the design of improved dimeric aptamers based on further optimization of the linker joining the two consecutive V7t1 sequences

    Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics

    Get PDF
    The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed

    Quantum encoding of dynamic directed graphs

    Get PDF
    In application domains such as routing, network analysis, scheduling, and planning, directed graphs are widely used as both formal models and core data structures for the development of efficient algorithmic solutions. In these areas, graphs are often evolving in time: for example, connection links may fail due to temporary technical issues, meaning that edges of the graph cannot be traversed for some time interval and alternative paths have to be followed. In classical computation graphs have been implemented both explicitly through adjacency matrices/lists and symbolically as ordered binary decision diagrams. Moreover, ad-hoc visit procedures have been developed to deal with dynamically evolving graphs. Quantum computation, exploiting interference and entanglement, has provided an exponential speed-up for specific problems, e.g., database search and integer factorization. In the quantum framework everything must be represented and manipulated using reversible operators. This poses a challenge when one has to deal with traversals of dynamically evolving directed graphs. Graph traversals are not intrinsically reversible because of converging paths. In the case of dynamically evolving graphs also the creation/destruction of paths comes into play against reversibility. In this paper we propose a novel high level graph representation in quantum computation supporting dynamic connectivity typical of real-world network applications. Our procedure allows to encode any multigraph into a unitary matrix. We devise algorithms for computing the encoding that are optimal in terms of time and space and we show the effectiveness of the proposal with some examples. We describe how to react to edge/node failures in constant time. Furthermore, we present two methods to perform quantum random walks taking advantage of this encoding: with and without projectors. We implement and test our encoding obtaining that the theoretical bounds for the running time are confirmed by the empirical results and providing more details on the behavior of the algorithms over graphs of different densities

    Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one!

    Get PDF
    The G-quadruplex-forming VEGF-binding aptamer V7t1 was previously found to be highly polymorphic in a K+-containing solution and, to restrict its conformational preferences to a unique, well-defined form, modified nucleotides (LNA and/or UNA) were inserted in its sequence. We here report an in-depth biophysical characterization of V7t1 in a Na+-rich medium, mimicking the extracellular environment in which VEGF targeting should occur, carried out combining several techniques to analyse the conformational behaviour of the aptamer and its binding to the protein. Our results demonstrate that, in the presence of high Na+ concentrations, V7t1 behaves in a very different way if subjected or not to annealing procedures, as evidenced by native gel electrophoresis, size exclusion chromatography and dynamic light scattering analysis. Indeed, not-annealed V7t1 forms both monomeric and dimeric G-quadruplexes, while the annealed oligonucleotide is a monomeric species. Remarkably, only the dimeric aptamer efficiently binds VEGF, showing higher affinity for the protein compared to the monomeric species. These findings provide new precious information for the development of improved V7t1 analogues, allowing more efficient binding to the cancer-related protein and the design of effective biosensors or theranostic devices based on VEGF targeting

    Synthesis and characterization of multifunctional nanovesicles composed of POPC lipid molecules for nuclear imaging

    Get PDF
    The integration of nuclear imaging analysis with nanomedicine has tremendously grown and represents a valid and powerful tool for the development and clinical translation of drug delivery systems. Among the various types of nanostructures used as drug carriers, nanovesicles represent intriguing platforms due to their capability to entrap both lipophilic and hydrophilic agents, and their well-known biocompatibility and biodegradability. In this respect, here we present the development of a labelling procedure of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine)-based liposomes incorporating an ad hoc designed lipophilic NOTA (1, 4, 7- triazacyclononane-1, 4, 7-triacetic acid) analogue, derivatized with an oleic acid residue, able to bind the positron emitter gallium-68(III). Based on POPC features, the optimal conditions for liposome labelling were studied with the aim of optimizing the Ga(III) incorporation and obtaining a significant radiochemical yield. The data presented in this work demonstrate the feasibility of the labelling procedure on POPC liposomes co-formulated with the ad hoc designed NOTA analogue. We thus provided a critical insight into the practical aspects of the development of vesicles for theranostic approaches, which in principle can be extended to other nanosystems exploiting a variety of bioconjugation protocols

    Etiological diagnosis, prognostic significance and role of electrophysiological study in patients with Brugada ECG and syncope.

    Get PDF
    BACKGROUND: Syncope is considered a risk factor for life-threatening arrhythmias in Brugada patients. Distinguishing a benign syncope from one due to ventricular arrhythmias is often difficult, unless an ECG is recorded during the episode. Aim of the study was to analyze the characteristics of syncopal episodes in a large population of Brugada patients and evaluate the role of electrophysiological study (EPS) and the prognosis in the different subgroups. METHODS AND RESULTS: One hundred ninety-five Brugada patients with history of syncope were considered. Syncope were classified as neurally mediated (group 1, 61%) or unexplained (group 2, 39%) on the basis of personal and family history, clinical features, triggers, situations, associated signs, concomitant therapy. Most patients underwent EPS; they received ICD or implantable loop-recorder on the basis of the result of investigations and physician's judgment. At 62±45months of mean follow-up, group 1 showed a significantly lower incidence of arrhythmic events (2%) as compared to group 2 (9%, p<0.001). Group 2 patients with positive EPS showed the highest risk of arrhythmic events (27%). No ventricular events occurred in subjects with negative EPS. CONCLUSION: Etiological definition of syncope in Brugada patients is important, as it allows identifying two groups with different outcome. Patients with unexplained syncope and ventricular fibrillation induced at EPS have the highest risk of arrhythmic events. Patients presenting with neurally mediated syncope showed a prognosis similar to that of the asymptomatic and the role of EPS in this group is unproven

    Statistical analysis of correlations and intermittency of a turbulent rotating column in a magnetoplasma device

    No full text
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)A detailed statistical analysis of density fluctuations in the cylindrical non-fusion device "Mistral" is performed. The experimental set-up is implemented in order to reach turbulent behavior in the rotating plasma column. Two different turbulent regimes are obtained corresponding to two selected sets of values for the anode potential and the biasing of the collecting plate. The first regime displays a slowly-rotating column characterized by the presence of a shear layer separating the plasma bulk from the scrape-off layer (SOL), the latter showing a strong intermittent behavior. The second regime corresponds to a weakly-rotating column in which coherence is lost in the plasma bulk and a standard diffusive process takes place in the SOL. These findings are supported by the calculation of the Hurst exponent of the turbulent signals using Wavelet-analysis techniques
    • …
    corecore