7 research outputs found

    Coping strategies in women's soccer athletes: a comparative study

    Get PDF
    Introduction: High-performance athletes suffer a series of psychological disorders that can harm their overall performance. With the high levels of competitiveness and physical/tactical training that are required today, coping strategies to overcome these psychological disorders can make the difference between a winning team and a losing team. Objective: To compare coping strategies among high-performance athletes and amateur women's soccer players. Methods: This is a quantitative, descriptive, cross-sectional, non-probability study. The sample consisted of 56 athletes, divided into two groups: G1 - high-performance athletes and G2 - amateur women's soccer players. The instrument used was the Athletic Coping Skills Inventory-28 (ACSI - 28), validated for Brazil (ACSI - 25BR) and a demographic questionnaire containing 12 questions, developed by the authors themselves. For the data analysis, descriptive statistics, the Shapiro-Wilk test and the Student t test for independent data were used. A confidence level of 95% was adopted. Results: The high performance athletes had higher average scores, which were statistically significant, comparing to the amateur athletes, in the dimensions: "performance under pressure"(p= 0.048), "concentration"(p= 0.020) and "confidence/motivation"(p= 0.009). Conclusion: The high performance athletes performed better in all dimensions except for "trainability" and "freedom from worry", when compared to the amateur athletes.Introdução: Os atletas de alto rendimento sofrem com uma série de fatores causadores de perturbações psicológicas, que podem acarretar danos ao seu desempenho final. Com a competitividade elevada e o nivelamento nos treinamentos físico e tático, as estratégias de coping (enfrentamento) para superar essas perturbações podem fazer a diferença entre um elenco campeão ou perdedor. Objetivos: Analisar e comparar as estratégias de coping entre atletas de alto rendimento e praticantes de futebol feminino. Métodos: Trata-se de um estudo quantitativo, descritivo, transversal e com amostragem não probabilística. A amostra foi composta por 56 atletas, divididas em dois grupos: G1 - atletas de alto rendimento e G2 - praticantes de futebol feminino. O instrumento utilizado foi o Athletic Coping Skills Inventory-28 (ACSI-28), validado para o Brasil (ACSI-25BR) e um questionário sociodemográfico contendo 12 questões, elaborado pelos próprios autores. Para a análise dos dados foi usada a estatística descritiva, teste de normalidade de Shapiro-Wilk e o teste t de Student para dados independentes. O nível de confiança adotado foi de 95%. Resultados: Atletas de alto rendimento obtiveram maior pontuação média, estatisticamente significante, com relação às praticantes de futebol feminino nas dimensões: "desempenho sob pressão" (p = 0,048), "concentração" (p = 0,020) e "confiança/motivação" (p = 0,009). Conclusão: Atletas de alto rendimento obtiveram melhor desempenho em todas as dimensões, exceto em "treinabilidade" e "ausência de preocupação", quando comparadas ao grupo de praticantes de futebol feminino.Fac Med Itajuba, Itajuba, MG, BrazilUniv Fed Sao Paulo, Escola Paulista Enfermagem, Itajuba, MG, BrazilUniv Tras Os Montes Alto Douro, Vila Real, PortugalUniv Fed Sao Paulo, Escola Paulista Enfermagem, Itajuba, MG, BrazilWeb of Scienc

    ESTRATÉGIAS DE COPING EM ATLETAS DE FUTEBOL FEMININO: ESTUDO COMPARATIVO

    Get PDF
    RESUMO Introdução: Os atletas de alto rendimento sofrem com uma série de fatores causadores de perturbações psicológicas, que podem acarretar danos ao seu desempenho final. Com a competitividade elevada e o nivelamento nos treinamentos físico e tático, as estratégias de coping (enfrentamento) para superar essas perturbações podem fazer a diferença entre um elenco campeão ou perdedor. Objetivos: Analisar e comparar as estratégias de coping entre atletas de alto rendimento e praticantes de futebol feminino. Métodos: Trata-se de um estudo quantitativo, descritivo, transversal e com amostragem não probabilística. A amostra foi composta por 56 atletas, divididas em dois grupos: G1 - atletas de alto rendimento e G2 - praticantes de futebol feminino. O instrumento utilizado foi o Athletic Coping Skills Inventory-28 (ACSI-28), validado para o Brasil (ACSI-25BR) e um questionário sociodemográfico contendo 12 questões, elaborado pelos próprios autores. Para a análise dos dados foi usada a estatística descritiva, teste de normalidade de Shapiro-Wilk e o teste t de Student para dados independentes. O nível de confiança adotado foi de 95%. Resultados: Atletas de alto rendimento obtiveram maior pontuação média, estatisticamente significante, com relação às praticantes de futebol feminino nas dimensões: "desempenho sob pressão" (p = 0,048), "concentração" (p = 0,020) e "confiança/motivação" (p = 0,009). Conclusão: Atletas de alto rendimento obtiveram melhor desempenho em todas as dimensões, exceto em "treinabilidade" e "ausência de preocupação", quando comparadas ao grupo de praticantes de futebol feminino

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore