7 research outputs found
Coping strategies in women's soccer athletes: a comparative study
Introduction: High-performance athletes suffer a series of psychological disorders that can harm their overall performance. With the high levels of competitiveness and physical/tactical training that are required today, coping strategies to overcome these psychological disorders can make the difference between a winning team and a losing team. Objective: To compare coping strategies among high-performance athletes and amateur women's soccer players. Methods: This is a quantitative, descriptive, cross-sectional, non-probability study. The sample consisted of 56 athletes, divided into two groups: G1 - high-performance athletes and G2 - amateur women's soccer players. The instrument used was the Athletic Coping Skills Inventory-28 (ACSI - 28), validated for Brazil (ACSI - 25BR) and a demographic questionnaire containing 12 questions, developed by the authors themselves. For the data analysis, descriptive statistics, the Shapiro-Wilk test and the Student t test for independent data were used. A confidence level of 95% was adopted. Results: The high performance athletes had higher average scores, which were statistically significant, comparing to the amateur athletes, in the dimensions: "performance under pressure"(p= 0.048), "concentration"(p= 0.020) and "confidence/motivation"(p= 0.009). Conclusion: The high performance athletes performed better in all dimensions except for "trainability" and "freedom from worry", when compared to the amateur athletes.Introdução: Os atletas de alto rendimento sofrem com uma sĂ©rie de fatores causadores de perturbações psicolĂłgicas, que podem acarretar danos ao seu desempenho final. Com a competitividade elevada e o nivelamento nos treinamentos fĂsico e tático, as estratĂ©gias de coping (enfrentamento) para superar essas perturbações podem fazer a diferença entre um elenco campeĂŁo ou perdedor. Objetivos: Analisar e comparar as estratĂ©gias de coping entre atletas de alto rendimento e praticantes de futebol feminino. MĂ©todos: Trata-se de um estudo quantitativo, descritivo, transversal e com amostragem nĂŁo probabilĂstica. A amostra foi composta por 56 atletas, divididas em dois grupos: G1 - atletas de alto rendimento e G2 - praticantes de futebol feminino. O instrumento utilizado foi o Athletic Coping Skills Inventory-28 (ACSI-28), validado para o Brasil (ACSI-25BR) e um questionário sociodemográfico contendo 12 questões, elaborado pelos prĂłprios autores. Para a análise dos dados foi usada a estatĂstica descritiva, teste de normalidade de Shapiro-Wilk e o teste t de Student para dados independentes. O nĂvel de confiança adotado foi de 95%. Resultados: Atletas de alto rendimento obtiveram maior pontuação mĂ©dia, estatisticamente significante, com relação Ă s praticantes de futebol feminino nas dimensões: "desempenho sob pressĂŁo" (p = 0,048), "concentração" (p = 0,020) e "confiança/motivação" (p = 0,009). ConclusĂŁo: Atletas de alto rendimento obtiveram melhor desempenho em todas as dimensões, exceto em "treinabilidade" e "ausĂŞncia de preocupação", quando comparadas ao grupo de praticantes de futebol feminino.Fac Med Itajuba, Itajuba, MG, BrazilUniv Fed Sao Paulo, Escola Paulista Enfermagem, Itajuba, MG, BrazilUniv Tras Os Montes Alto Douro, Vila Real, PortugalUniv Fed Sao Paulo, Escola Paulista Enfermagem, Itajuba, MG, BrazilWeb of Scienc
ESTRATÉGIAS DE COPING EM ATLETAS DE FUTEBOL FEMININO: ESTUDO COMPARATIVO
RESUMO Introdução: Os atletas de alto rendimento sofrem com uma sĂ©rie de fatores causadores de perturbações psicolĂłgicas, que podem acarretar danos ao seu desempenho final. Com a competitividade elevada e o nivelamento nos treinamentos fĂsico e tático, as estratĂ©gias de coping (enfrentamento) para superar essas perturbações podem fazer a diferença entre um elenco campeĂŁo ou perdedor. Objetivos: Analisar e comparar as estratĂ©gias de coping entre atletas de alto rendimento e praticantes de futebol feminino. MĂ©todos: Trata-se de um estudo quantitativo, descritivo, transversal e com amostragem nĂŁo probabilĂstica. A amostra foi composta por 56 atletas, divididas em dois grupos: G1 - atletas de alto rendimento e G2 - praticantes de futebol feminino. O instrumento utilizado foi o Athletic Coping Skills Inventory-28 (ACSI-28), validado para o Brasil (ACSI-25BR) e um questionário sociodemográfico contendo 12 questões, elaborado pelos prĂłprios autores. Para a análise dos dados foi usada a estatĂstica descritiva, teste de normalidade de Shapiro-Wilk e o teste t de Student para dados independentes. O nĂvel de confiança adotado foi de 95%. Resultados: Atletas de alto rendimento obtiveram maior pontuação mĂ©dia, estatisticamente significante, com relação Ă s praticantes de futebol feminino nas dimensões: "desempenho sob pressĂŁo" (p = 0,048), "concentração" (p = 0,020) e "confiança/motivação" (p = 0,009). ConclusĂŁo: Atletas de alto rendimento obtiveram melhor desempenho em todas as dimensões, exceto em "treinabilidade" e "ausĂŞncia de preocupação", quando comparadas ao grupo de praticantes de futebol feminino
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost