8 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Relationship between the IgA antibody response against streptococcus mutans GbpB and severity of dental caries in childhood

    No full text
    Explore the associations between the severity of dental caries in childhood, mutans streptococci (MS) levels and IgA antibody response against Streptococcus mutans GbpB. Moreover, other caries-related etiological factors were also investigated. Design 36–60 month-old children were grouped into Caries-Free (CF, n = 19), Early Childhood Caries (ECC, n = 17) and Severe Early Childhood Caries (S-ECC, n = 21). Data from socio-economic-cultural status, oral hygiene habits and dietary patterns were obtained from a questionnaire and a food-frequency diary filled out by parents. Saliva was collected from children for microbiological analysis and detection of salivary IgA antibody reactive with S. mutans GbpB in western blot. Results S-ECC children had reduced family income compared to those with ECC and CF. There was difference between CF and caries groups (ECC and S-ECC) in MS counts. Positive correlations between salivary IgA antibody response against GbpB and MS counts were found when the entire population was evaluated. When children with high MS counts were compared, S-ECC group showed significantly lower IgA antibody levels to GbpB compared to CF group. This finding was not observed for the ECC group. Conclusions This study suggests that children with S-ECC have reduced salivary IgA immune responses to S. mutans GbpB, potentially compromising their ability to modify MS infection and its cariogenic potential. Furthermore, a reduced family income and high levels of MS were also associated with S-ECC672227COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informação2012/19235-5; 2013/12167-

    Abordagem preventiva e curativa da cárie precoce da infância nas creches públicas de Araçatuba

    No full text
    The objectives of this study are to evaluate the oral health of children from public day cares of Araçatuba, to aware parents and school caretakers about oral health maintenance and teach brushing techniques for children and to perform treatment of teeth with dental caries using the atraumatic restorative technique with glass ionomer cement and promote clinical follow up in children.Os objetivos do projeto são avaliar a saúde bucal de crianças das creches públicas de Araçatuba, conscientizar familiares e cuidadores escolares sobre a manutenção da saúde bucal e ensinar as técnicas de escovação voltadas para as crianças, e também realizar o tratamento dos dentes com lesões de cárie utilizando a técnica restauradora atraumática com cimento de ionômero de vidro e acompanhamento clínico das crianças

    Implementation of a Brazilian Cardioprotective Nutritional (BALANCE) Program for improvement on quality of diet and secondary prevention of cardiovascular events: A randomized, multicenter trial

    Get PDF
    Background: Appropriate dietary recommendations represent a key part of secondary prevention in cardiovascular disease (CVD). We evaluated the effectiveness of the implementation of a nutritional program on quality of diet, cardiovascular events, and death in patients with established CVD. Methods: In this open-label, multicenter trial conducted in 35 sites in Brazil, we randomly assigned (1:1) patients aged 45 years or older to receive either the BALANCE Program (experimental group) or conventional nutrition advice (control group). The BALANCE Program included a unique nutritional education strategy to implement recommendations from guidelines, adapted to the use of affordable and regional foods. Adherence to diet was evaluated by the modified Alternative Healthy Eating Index. The primary end point was a composite of all-cause mortality, cardiovascular death, cardiac arrest, myocardial infarction, stroke, myocardial revascularization, amputation, or hospitalization for unstable angina. Secondary end points included biochemical and anthropometric data, and blood pressure levels. Results: From March 5, 2013, to Abril 7, 2015, a total of 2534 eligible patients were randomly assigned to either the BALANCE Program group (n = 1,266) or the control group (n = 1,268) and were followed up for a median of 3.5 years. In total, 235 (9.3%) participants had been lost to follow-up. After 3 years of follow-up, mean modified Alternative Healthy Eating Index (scale 0-70) was only slightly higher in the BALANCE group versus the control group (26.2 ± 8.4 vs 24.7 ± 8.6, P <.01), mainly due to a 0.5-serving/d greater intake of fruits and of vegetables in the BALANCE group. Primary end point events occurred in 236 participants (18.8%) in the BALANCE group and in 207 participants (16.4%) in the control group (hazard ratio, 1.15; 95% CI 0.95-1.38; P =.15). Secondary end points did not differ between groups after follow-up. Conclusions: The BALANCE Program only slightly improved adherence to a healthy diet in patients with established CVD and had no significant effect on the incidence of cardiovascular events or death. © 2019 The Author

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore