83 research outputs found

    The Impact of Organisational Politics on Employee performance in UK Based Organisations

    Get PDF
    The purpose of the research is to investigate and analyse the impact of workplace politics on employee performance. The objectives of the research were to understand the nature of workplace politics influencing employee performance and critically investigating the impact of workplace politics on employee performance in UK based organisations. Finally, the last objective was to provide recommendations to organisational managers to develop appropriate strategies to achieve favourable outcomes of workplace politics. The methodology implemented to carry out the research comprised of the abductive approach and the worldview maintained by the researcher was pragmatism. Using the mixed methods to data collection, both quantitative and qualitative methods were followed to collect data. The quantitative method involved surveying the employees of the chosen organisations using structured, closed-ended questionnaires as the instrument. The questionnaires were mainly built upon the five-point Likert scale and the survey was conducted online. On the other hand, the quantitative method involved interviewing the managers of the same organisations using semi-structured, open-ended questions. Findings indicate that the presence of organisational politics is usually perceived by employees as negative and therefore its impact is detrimental in terms of employee behaviour. It reduces the extent of employees’ commitment towards the organisational goals, citizenship behaviour and daily work performance. A highly politicised work environment is also characterised with the presence of Machiavellians who are self-centred, maintain hidden agendas and take unfair advantage of others to fulfil their personal goals. Politicised environment also gives birth to an influential group, promotes lack of transparency in performance appraisals and rewards. However, managerial views indicate that employees led by dynamic leaders are less likely to develop a negative perception of politics. Based on the findings obtained from the empirical studies and gaps identified, suitable recommendations are given to the organisational managers to develop effective strategies to overcome the negative impact of politics

    ALL classification using neural ensemble and memetic deep feature optimization

    Get PDF
    Acute lymphoblastic leukemia (ALL) is a fatal blood disorder characterized by the excessive proliferation of immature white blood cells, originating in the bone marrow. An effective prognosis and treatment of ALL calls for its accurate and timely detection. Deep convolutional neural networks (CNNs) have shown promising results in digital pathology. However, they face challenges in classifying different subtypes of leukemia due to their subtle morphological differences. This study proposes an improved pipeline for binary detection and sub-type classification of ALL from blood smear images. At first, a customized, 88 layers deep CNN is proposed and trained using transfer learning along with GoogleNet CNN to create an ensemble of features. Furthermore, this study models the feature selection problem as a combinatorial optimization problem and proposes a memetic version of binary whale optimization algorithm, incorporating Differential Evolution-based local search method to enhance the exploration and exploitation of feature search space. The proposed approach is validated using publicly available standard datasets containing peripheral blood smear images of various classes of ALL. An overall best average accuracy of 99.15% is achieved for binary classification of ALL with an 85% decrease in the feature vector, together with 99% precision and 98.8% sensitivity. For B-ALL sub-type classification, the best accuracy of 98.69% is attained with 98.7% precision and 99.57% specificity. The proposed methodology shows better performance metrics as compared with several existing studies

    Impact of Parental Involvement on Achievement Score of Students at Elementary Level

    Get PDF
    The aim of this research was to investigate the impact of parental involvement on the achievement score of elementary-level students. Parental involvement was the independent variable and the achievement scores of students were the dependent variable. Whereas, demographic variables like school status, SES, and parents’ qualifications were also important. This study was comparative in nature and all elementary-level schools were taken as population. Elementary campuses of boys and girls were conveniently selected from the public sector in Faisalabad and taken as accessible population. From this accessible population, a sample of 376 students (307 male and 69 female) were drawn who have passed the elementary exams. Demographic sheets, copies of elementary result cards, and questionnaires were collected in order to find out the impact of parental involvement on the achievement scores of students at the elementary level. Descriptive statistics (mean, standard deviation, frequency) was employed along with ANOVA, and t-test for data analysis. Keeping in view the results taken from Punjab Examination Commission, significant differences between the academic performance of the children belonging to the businessmen class and the job holders’ class were noticed. Further, it was also determined from the dished-out results that the difference in academic achievement level is significant when more involvement of parents was there

    Genome-Wide Diversity of MADS-Box Genes in Bread Wheat is Associated with its Rapid Global Adaptability

    Get PDF
    MADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. Here, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more rapid evolution was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that could accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits

    Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercropping system on low fertility soils

    Get PDF
    Achieving food security through intensive agricultural practices on low fertility soils is challenging as crop productivity is increasingly curtailed by the loss of soil structural stability and rapid depletion of soil organic carbon (SOC). As such, the conversion from traditional mono-cropping to legume-cereal intercropping, especially with integrated fertilization, may increase crop yields with the least ecological footprint. We set up a 2-year field experiment in a split-plot design with cowpea-maize monoculture and intercropping under different organic-inorganic fertilization regimes, including no fertilization (control), organic input only (compost), chemical input only (NPK), and multi-nutrient enriched compost (NPKEC). We observed that intercropped maize had a significantly higher biomass yield compared to the corresponding monoculture when fertilized with NPKEC fertilizer. However, cowpea biomass yield differences between monoculture and intercropped plots were comparable under all fertilization regimes. In contrast, the grain yield advantage of both maize and cowpea was significantly enhanced under the intercropping system compared to monoculture, with NPKEC showing the most significant effect among all fertilization regimes. When comparing the relative contribution of the fertilization regime to SOC, the NPKEC fertilizer provided the highest SOC-sequestration (0.30 Mg C/ha yr−1). At the same time, the effect of the cropping system on C-sequestration showed that intercropping provided the highest C-sequestration (0.17 Mg C/ha yr−1) compared to monocultures of both crops. Although compost application significantly increased mineral associated (MAOC) and particulate associated organic carbon (PAOC) concentrations compared to unfertilized control plots, NPKEC fertilization with intercropping system was the most effective combination causing the greatest increase of both soil C pools over time. Based on redundancy analysis (RDA), the positive association of MAOC and PAOC with C-sequestration suggests the importance of both organic fractions as primary C reservoirs conducting SOC storage. Importantly, although compost alone in association with intercropping had a lower C-sequestration, it was associated to a better soil structure as confirmed by its positive relationship with macro-and micro-aggregation, water stable aggregates (WSA), and mean weight diameter (MDA). Overall, our results indicate the importance of restoring soil structure in degraded soils through appropriate land management solutions, such as stoichiometrically balanced fertilization practices (NPKEC) and crop diversification (intercropping), in order to achieve significant gains in SOC storage and, ultimately, improve crop productivity

    Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri)

    Get PDF
    Background: In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. Results: In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate in pear fruits by real-time qRT-PCR. Conclusions: Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.This work was performed at the school of Life Sciences, Anhui agricultural university, Hefei, China and was supported by National Natural Science Foundation of China (No. 31640068) and Natural Science Youth Foundation of Anhui Agricultural University (No. 2019zd01). These funding bodies had no role in the design of the study, collection, analysis, and interpretation of data or in writing the manuscript

    Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species toward Cr and Pb stress

    Get PDF
    Being sessile organisms, plants cannot escape unwanted changes in the environment. The rapid human population explosion caused significant environmental problems. Heavy metals produced through various sources can cause severe damage to living organisms. The study was planned to evaluate four grass species’ morpho-physiological growth characteristics and phytoremediation capabilities under chromium (Cr) and lead stress (Pb) in the arid climate. Typha angustifolia, Tragus roxburghii, Aeluropus logopoides, and Cenchrus ciliaris grass species were used for the study. One-year-old stubbles from the Cholistan desert were used for the experiment. Cr treatments in the form of K2Cr2O7 were applied at 0, 20, 40, and 80 mg L–1, whereas Pb was applied as PbCl2 at 0, 50, 200, and 500 mg L–1 as control, low, moderate and high-stress, respectively. After 6 weeks of heavy metals treatments, plants were harvested and analyzed for growth performance and phytoremediation capabilities. Results depicted that, regarding morphological attributes, T. angustifolia performed better, followed by C. ciliaris; no clear pattern was observed for T. roxburghii and A. logopoides. The CO2 assimilation rate (Co2d) and water use efficiency (WUE) increased as the heavy metal stress increased in all species under both metals. In contrast, total chlorophyll content was higher under low stress. Other physiological parameters, such as relative humidity (RHd), net photosynthetic rate (A), transpiration rate (E), stomatal conductance (Gs), leaf internal CO2 concentration (Ci) and membrane stability index (MSI) gradually decreased as the Cr, and Pb stress levels increased among all the species. Moreover, Cr and Pb absorption contents of T. angustifolia were higher than the other three species at each stress level. Overall, T. angustifolia thrived against heavy metals stress and showed higher biomass, maximum photosynthetic measurements, WUE and higher metal absorption among all the selected species. Results concluded that although all the selected species behaved fine under stress conditions, T. angustifolia performance was better; thus, it can be used to remediate the soil near industrial estates

    Optimal resource allocation for GAA users in spectrum access system using Q-learning algorithm

    Get PDF
    Spectrum access system (SAS) is a three-tier layered spectrum sharing architecture proposed by the Federal Communications Commission (FCC) for Citizens Broadband Radio Service (CBRS) 3.5 GHz band. The available 150 MHz spectrum is dynamically shared among Incumbent Access (IA), Primary Access Licensees (PAL) and General Authorized Access (GAA) users. IA users are the highest priority federal military users, PAL users are the licensed users and the GAA users are the least priority unlicensed users. In this scenario, PAL operators are willing to give access to their idle spectrum to GAA users to generate extra revenue. SAS will ensure to protect IA users and PAL users from interference caused by lower-tier users. It is the responsibility of SAS to allocate resources to GAA users but the method to do so is left open. In this article, a novel auction algorithm based on Q-learning for dynamic spectrum access (SAS-QLA) is proposed. In SAS-QLA, multiple GAA users dynamically and intelligently bid using Q-learning to access PAL reserved idle channels. SAS will decide to allocate the channels to GAA users with maximum bidding offers. GAA users have their own quality of service (QoS) demands i.e., transmission rate, packet loss, bidding efficiency, and maintain the preference of available PAL reserved idle channels based on Q-learning considering the available QoS. The proposed scenario is also modeled as a knapsack NP-hard problem and solved using dynamic programming and distributed relaxation method. Numerical results demonstrate the effectiveness of the SAS-QLA algorithm in improving the bidding efficiency, maximizing the data rate per unit cost and spectrum utilization.Web of Science10608046079

    An integrated antenna system for 4G and millimeter-wave 5G future handheld devices

    Get PDF
    In this work, an integrated antenna system with Defected Ground Structure (DGS) is presented for Fourth Generation (4G) and millimeter (mm)-wave Fifth Generation (5G) wireless applications and handheld devices. The proposed design with overall dimensions of 110 mm × 75 mm is modeled on 0.508 mm thick Rogers RT/Duroid 5880 substrate. Radiating structure consists of antenna arrays excited by the T-shape 1 × 2 power divider/combiner. Dual bands for 4G centered at 3.8 GHz and 5.5 GHz are attained, whereas the 10-dB impedance bandwidth of 24.4 - 29.3 GHz is achieved for the 5G antenna array. In addition, a peak gain of 5.41 dBi is demonstrated across the operating bandwidth of the 4G antenna array. Similarly, for the 5G mm-wave configuration the attained peak gain is 10.29 dBi. Moreover, significant isolation is obtained between the two antenna modules ensuring efficient dual-frequency band operation using a single integrated solution. To endorse the concept, antenna prototype is fabricated and far-field measurements are procured. Simulated and measured results exhibit coherence. Also the proposed design is investigated for the beam steering capability of the mm-wave 5G antenna array using CST®MWS®. The demonstrated structure offers various advantages including compactness, wide bandwidth, high gain, and planar configuration. Hence, the attained radiation characteristics prove the suitability of the proposed design for the current and future wireless handheld devices

    Performance evaluation of phosphonium based deep eutectic solvents coated cerium oxide nanoparticles for CO2 capture

    Get PDF
    The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs
    • …
    corecore