4 research outputs found
Beam-induced Background Simulations for the CMS Experiment at the LHC
Beam-induced background comes from interactions of the beam and beam halo particles with either the residual gas in the vacuum chamber of accelerator or the collimators that define the beam aperture. Beam-induced processes can potentially be a significant source of background for physics analyses at the LHC. This contribution describes the simulation software environment used for this part of the CMS experiment activity and recent beam-induced background simulation results for the Phase-2 CMS operation design
Physical Design of the Radiation Shielding for the CMS Experiment at LHC
The design of the radiation shielding for the CMS experiment at the LHC requires a simulation of the radiation environment using a model of the CMS experimental setup, accelerator components and the experimental hall infrastructure. The radiation simulations are used to optimise the design of the CMS detectors components and also the interface of the CMS detector with LHC accelerator. The Beam Radiation Instrumentation and Luminosity Project of CMS is responsible for giving important input into the optimisation and upgrade of radiation shielding used in CMS and also the radiation environment simulations software infrastructure. This contribution describes the organization of this work, the simulation software environment used for this part of CMS experiment activity and recent radiation simulation results used to optimise the forward shielding for CMS
Benchmarking of the Radiation Environment Simulations for CMS Experiment at LHC
Radiation Simulations group of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment provide for CMS radiation environment and radiation effects simulation and benchmarking of these calculations with CMS data and other data from LHC measuring devices. We present some results of such benchmarking and the reliability analysis of the simulation procedures for radiation environment calculations at the LHC
The Pixel Luminosity Telescope: a detector for luminosity measurement at CMS using silicon pixel sensors
International audienceThe Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022