1,403 research outputs found

    Applications of the magneto-optical filter to stellar pulsation measurements

    Get PDF
    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series

    Solar Seismology from Space. a Conference at Snowmass, Colorado

    Get PDF
    The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure

    The five-minute oscillations: What's left to be done

    Get PDF
    Current observational methods for studying these oscillations at large horizontal wavenumbers are discussed in detail and several two dimensional power spectra obtained with a CID camera on the main spectrograph of the McMath telescope at Kitt Peak National Observatory are described. The best-resolved observations of the p-mode obtained at chromospheric elevations are also presented. Recent progress in studies of the p-modes at low wavenumbers with full-disk velocity detection schemes is summarized. These full-disk observations of radial and low-degree non-radial modes were shown to place severe constraints on the theoretical calculation of solar interior structure. Progress in making fully-consistent solar models which fit both the high- and low-wave number observations is described. Finally, the observational and theoretical improvements that are necessary for further progress in solar seismology are summarized

    The 1984 solar oscillation program of the Mount Wilson 60-foot tower

    Get PDF
    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations

    A method for the estimation of p-mode parameters from averaged solar oscillation power spectra

    Full text link
    A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from mm-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we have computed using the WMLTP method on the 66-day long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion we developed a new procedure for the identification and correction of outliers in a frequency data set. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model~S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle~24 during mid-2010

    The analysis of solar models: Neutrinos and oscillations

    Get PDF
    Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced

    Atmospheric extinction coefficients in the Ic\mathrm{I_c} band for several major international observatories: Results from the BiSON telescopes, 1984 to 2016

    Get PDF
    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory (LCO), Chile; Observatorio del Teide, Iza\~{n}a, Tenerife, Canary Islands; the South African Astronomical Observatory (SAAO), Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the Ic\mathrm{I_c} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984 to 2016.Comment: 15 pages, 10 figures, 4 tables. Accepted by Astronomical Journal: 2017 July 2

    Scavenger community response to the removal of a dominant scavenger

    Get PDF
    The alteration of scavenging communities can reduce basic ecosystem services and increase risks to human and wildlife health. Recent work demonstrated that scavenging communities in agricultural landscapes are extremely efficient: superabundant mesopredators sequestered system energy by dominating scavenging activity. To explore how the disturbance of these communities affects the stability of carrion removal as an ecosystem function, we experimentally manipulated a scavenging community within an agricultural landscape by reducing the abundance of the dominant scavenger, raccoons Procyon lotor. We then monitored the fates of 676 mouse Mus musculus carcasses placed in 13 control and 13 removal woodlots from June 2007 – May 2008. The diversity of vertebrate scavengers did not change between control and removal woodlots and scavenging by invertebrates was unaffected by our experiment. Although Virginia opossums Didelphis virginiana and other scavengers exhibited a functional response when raccoons were reduced in abundance, the increases did not change the proportional allocation of carcasses among scavengers. Finally, the reduced abundance of a major scavenger affected system efficiency. More carcasses remained un-scavenged at the end of trials in removal woodlots than in control woodlots. This experiment demonstrates the vulnerability of a critical ecosystem service, carrion removal, to perturbations of the scavenging community and serves to highlight the method by which scavenger communities may respond to perturbations
    • …
    corecore