1,697 research outputs found

    Radiative neutron capture on a proton at BBN energies

    Full text link
    The total cross section for radiative neutron capture on a proton, np→dÎłnp \to d \gamma, is evaluated at big bang nucleosynthesis (BBN) energies. The electromagnetic transition amplitudes are calculated up to next-to leading order within the framework of pionless effective field theory with dibaryon fields. We also calculate the dγ→npd\gamma\to np cross section and the photon analyzing power for the dγ⃗→npd\vec{\gamma}\to np process from the amplitudes. The values of low energy constants that appear in the amplitudes are estimated by a Markov Chain Monte Carlo analysis using the relevant low energy experimental data. Our result agrees well with those of other theoretical calculations except for the np→dÎłnp\to d\gamma cross section at some energies estimated by an R-matrix analysis. We also study the uncertainties in our estimation of the np→dÎłnp\to d\gamma cross section at relevant BBN energies and find that the estimated cross section is reliable to within ∌\sim1% error.Comment: 21 pages and 12 eps figures; 6 eps figures and 2 references added, and accepted for publication in Phys. Rev.

    The Instanton Molecule Liquid and "Sticky Molasses" Above T_c

    Full text link
    The main objective of this work is to explore the evolution in the structure of the quark-antiquark bound states in going down in the chirally restored phase from the so-called "zero binding points" T_zb to the QCD critical temperature T_c at which the Nambu-Goldstone and Wigner-Weyl modes meet. In doing this, we adopt the idea recently introduced by Shuryak and Zahed for charmed cˉc\bar c c, light-quark qˉq\bar q q mesons π,σ,ρ,A1\pi, \sigma, \rho, A_1 and gluons that at T_zb, the quark-antiquark scattering length goes through infinity at which conformal invariance is restored, thereby transforming the matter into a near perfect fluid behaving hydrodynamically, as found at RHIC. We show that the binding of these states is accomplished by the combination of (i) the color Coulomb interaction, (ii) the relativistic effects, and (iii) the interaction induced by the instanton-anti-instanton molecules. The spin-spin forces turned out to be small. While near T_zb all mesons are large-size nonrelativistic objects bound by Coulomb attraction, near T_c they get much more tightly bound, with many-body collective interactions becoming important and making the σ\sigma and π\pi masses approach zero (in the chiral limit). The wave function at the origin grows strongly with binding, and the near-local four-Fermi interactions induced by the instanton molecules play an increasingly more important role as the temperature moves downward toward T_c.Comment: Contribution to QM2004 proceedings, 4 page

    Exchange Current Corrections to Neutrino--Nucleus Scattering

    Get PDF
    Relativistic exchange current corrections to neutrino--nucleus cross sections are presented assuming non--vanishing strange quark form factors for the constituent nucleons. For charged current processes the exchange current corrections can lower the impulse approximation results by 10\% while these corrections are found to be sensitive to both the nuclear density and the strange quark axial form factor of the nucleon for neutral current processes. Implications on the LSND experiment to determine this form factor are discussed.Comment: 11 pages, 2 figures, revtex 3.0, full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints/preprints.html To appear in Phys. Rev. Lett

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    Radiative Neutron-Proton Capture in Effective Chiral Lagrangians

    Get PDF
    We calculate the cross-section for the thermal n+p→d+Îłn+p\rightarrow d+\gamma process in chiral perturbation theory to next-to-next-to-leading order using heavy-fermion formalism. The exchange current correction is found to be (4.5±0.3) %(4.5\pm 0.3)~\% in amplitude and the chiral perturbation at one-loop order gives the cross section \sigma_{th}^{np}=(334\pm 2)\ {\mbox mb} which is in agreement with the experimental value (334.2\pm 0.5)\ {\mbox mb}. Together with the axial charge transitions, this provides a strong support for the power of chiral Lagrangians for nuclear physics.Comment: 9 pages, revtex, uses epsfig.sty, 2 uuencoded figure

    Chiral effective action with heavy quark symmetry

    Full text link
    We derive an effective action combining chiral and heavy quark symmetry, using approximate bosonization techniques of QCD. We explicitly show that the heavy-quark limit is compatible with the large NcN_c (number of color) limit in the meson sector, and derive specific couplings between the light and heavy mesons (DD, D∗D^*, ...) and their chiral partners. The relevance of this effective action to solitons with heavy quarks describing heavy baryons is discussed.Comment: 14 pages, SUNY-NTG-92/2

    1/N_c Expansion of the Heavy Baryon Isgur-Wise Functions

    Get PDF
    The 1/N_c expansion of the heavy baryon Isgur-Wise functions is discussed. Because of the contracted SU(2N_f) light quark spin-flavor symmetry, the universality relations among the Isgur-Wise functions of \Lambda_b to \Lambda_c and \Sigma_b^{(*)} to \Sigma_c^{(*)} are valid up to the order of 1/N_c^2.Comment: 7 pages, latex, no figures, to appear in Phys. Rev.

    The Solar Proton Burning Process Revisited In Chiral Perturbation Theory

    Get PDF
    The proton burning process p + p -> d + e(+) + \nu(e), important for the stellar evolution of main-sequence stars of mass equal to or less than that of the Sun, is computed in effective field theory using chiral perturbation expansion to the next-to-next-to leading chiral order. This represents a model-independent calculation consistent with low-energy effective theory of QCD comparable in accuracy to the radiative np capture at thermal energy previously calculated by first using very accurate two-nucleon wavefunctions backed up by an effective field theory technique with a finite cut-off. The result obtained thereby is found to support within theoretical uncertainties the previous calculation of the same process by Bahcall and his co-workers.Comment: 30 pages, 2 eps files, aaspp4.sty needed, slightly modified, to be published in Ap.
    • 

    corecore