280 research outputs found

    A Role for the Vacuolating Cytotoxin, VacA, in Colonization and Helicobacter pylori-Induced Metaplasia in the Stomach

    Get PDF
    Carriage of Helicobacter pylori strains producing more active (s1/i1) forms of VacA is strongly associated with gas-tric adenocarcinoma. To our knowledge, we are the first to determine effects of different polymorphic forms of VacA on inflammation and metaplasia in the mouse stomach. Bacteria producing the less active s2/i2 form of VacA colonized mice more efficiently than mutants null for VacA or producing more active forms of it, providing the first evidence of a positive role for the minimally active s2/i2 toxin. Strains producing more active toxin forms induced more severe and extensive metaplasia and in flammation in the mouse stomach than strains producing weakly active (s2/i2) toxin. We also examined the association in humans, controlling for cag PAI status. In human gastric biopsy specimens, the vacA i1 allele was strongly associated with precancerous intestinal metaplasia, with almost complete absence of intestinal metaplasia in subjects infected with i2-type strains, even in a vacA s1, cagA+ background

    Stacking sequence selection for defect-free forming of uni-directional ply laminates

    Get PDF
    In order to meet demands for increased production rates of laminated composite components, aerospace manufacturing is being forced towards highly automated production processes such as forming. However, such automated processes increase the likelihood of inducing defects that lead to manufacturing cost and time inefficiencies which must be avoided. This paper introduces a new compatibility index, based on comparison of minimum energy (resin dominated) modes of adjacent plies that identifies stacking sequences which minimise defect formation. The index is validated using an experimental process where seven laminates with different stacking sequences are formed onto a complex tool geometry using an industrial double diaphragm former. Experimental results confirm that sequences with a high compatibility index produce defect-free parts at elevated temperature. Specifically, sequences with 90° interface angles (high compatibility indices) promote the most formable solutions and continuous 45° interfaces that spiral (e.g. 45/0/-45/90) which have a low compatibility index, produce the most problematic forming conditions owing to a shear locking behaviour. Laminate stacking sequence is thus shown to be a significant contributor, alongside temperature and vacuum rate, to quality of formed parts. The compatibility index method can therefore be used to increase production rate and quality in laminated composite manufacturing, leading to significant cost and efficiency savings.</p

    ENCODE whole-genome data in the UCSC Genome Browser

    Get PDF
    The Encyclopedia of DNA Elements (ENCODE) project is an international consortium of investigators funded to analyze the human genome with the goal of producing a comprehensive catalog of functional elements. The ENCODE Data Coordination Center at The University of California, Santa Cruz (UCSC) is the primary repository for experimental results generated by ENCODE investigators. These results are captured in the UCSC Genome Bioinformatics database and download server for visualization and data mining via the UCSC Genome Browser and companion tools (Rhead et al. The UCSC Genome Browser Database: update 2010, in this issue). The ENCODE web portal at UCSC (http://encodeproject.org or http://genome.ucsc.edu/ENCODE) provides information about the ENCODE data and convenient links for access

    The UCSC Genome Browser Database: 2008 update

    Get PDF
    The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year's additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.ed

    The Network for Analysing Longitudinal Population-based HIV/AIDS data on Africa (ALPHA):Data on mortality, by HIV status and stage on the HIV care continuum, among the general population in seven longitudinal studies between 1989 and 2014

    Get PDF
    Timely progression of people living with HIV (PLHIV) from the point of infection through the pathway from diagnosis to treatment is important in ensuring effective care and treatment of HIV and preventing HIV-related deaths and onwards transmission of infection. Reliable, population-based estimates of new infections are difficult to obtain for the generalised epidemics in sub-Saharan Africa. Mortality data indicate disease burden and, if disaggregated along the continuum from diagnosis to treatment, can also reflect the coverage and quality of different HIV services. Neither routine statistics nor observational clinical studies can estimate mortality prior to linkage to care nor following disengagement from care. For this, population-based data are required.The Network for Analysing Longitudinal Population-based HIV/AIDS data on Africa brings together studies in Kenya, Malawi, South Africa, Tanzania, Uganda, and Zimbabwe. Eight studies have the necessary data to estimate mortality by HIV status, and seven can estimate mortality at different stages of the HIV care continuum. This data note describes a harmonised dataset containing anonymised individual-level information on survival by HIV status for adults aged 15 and above. Among PLHIV, the dataset provides information on survival during different periods: prior to diagnosis of infection; following diagnosis but before linkage to care; in pre-antiretroviral treatment (ART) care; in the first six months after ART initiation; among people continuously on ART for 6+ months; and among people who have ever interrupted ART

    Meta-Alignment with Crumble and Prune: Partitioning very large alignment problems for performance and parallelization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Continuing research into the global multiple sequence alignment problem has resulted in more sophisticated and principled alignment methods. Unfortunately these new algorithms often require large amounts of time and memory to run, making it nearly impossible to run these algorithms on large datasets. As a solution, we present two general methods, Crumble and Prune, for breaking a phylogenetic alignment problem into smaller, more tractable sub-problems. We call Crumble and Prune <it>meta-alignment </it>methods because they use existing alignment algorithms and can be used with many current alignment programs. Crumble breaks long alignment problems into shorter sub-problems. Prune divides the phylogenetic tree into a collection of smaller trees to reduce the number of sequences in each alignment problem. These methods are orthogonal: they can be applied together to provide better scaling in terms of sequence length and in sequence depth. Both methods partition the problem such that many of the sub-problems can be solved independently. The results are then combined to form a solution to the full alignment problem.</p> <p>Results</p> <p>Crumble and Prune each provide a significant performance improvement with little loss of accuracy. In some cases, a gain in accuracy was observed. Crumble and Prune were tested on real and simulated data. Furthermore, we have implemented a system called Job-tree that allows hierarchical sub-problems to be solved in parallel on a compute cluster, significantly shortening the run-time.</p> <p>Conclusions</p> <p>These methods enabled us to solve gigabase alignment problems. These methods could enable a new generation of biologically realistic alignment algorithms to be applied to real world, large scale alignment problems.</p

    ELEVATED PHENYLACETIC ACID LEVELS DO NOT CORRELATE WITH ADVERSE EVENTS IN PATIENTS WITH UREA CYCLE DISORDERS OR HEPATIC ENCEPHALOPATHY AND CAN BE PREDICTED BASED ON THE PLASMA PAA TO PAGN RATIO

    Get PDF
    Background Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100), both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. Methods The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients ≥2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Results Only 0.2% (11) of 4683 samples exceeded 500 ug/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio > 2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels > 500 μg/ml. Conclusions The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker

    Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP) have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress).</p> <p>Results</p> <p>A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to be the explanation that no human cases of LCAD deficiency have been described.</p> <p>Conclusion</p> <p>In summary, this work provides a detailed kinetic model of mitochondrial metabolism with specific focus on fatty acid β-oxidation to simulate and predict the dynamic response of that metabolic network in the context of human disease. Our findings offer insight into the disease process (e.g. rapid progress to coma) and might confirm new explanations (no human cases of LCAD deficiency), which can hardly be obtained from experimental data alone.</p
    corecore