37 research outputs found

    Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Full text link
    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However, when cavitation occurs, the mass flow growth rate is reduced and eventually it collapses into a choked flow state. In the cavitating regime, as theoretically predicted and experimentally verified, the discharge coefficient grows with the Nurick cavitation number

    Swimming in circles: Motion of bacteria near solid boundaries

    Get PDF
    Near a solid boundary, E. coli swims in clockwise circular motion. We provide a hydrodynamic model for this behavior. We show that circular trajectories are natural consequences of force-free and torque-free swimming, and the hydrodynamic interactions with the boundary, which also leads to a hydrodynamic trapping of the cells close to the surface. We compare the results of the model with experimental data and obtain reasonable agreement. In particular, we show that the radius of curvature of the trajectory increases with the length of the bacterium body.Comment: Also available at http://people.deas.harvard.edu/~lauga

    Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?

    Get PDF
    Author Posting. © The Author, 2011. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Journal of Plankton Research 33 (2011): 998-1011, doi:10.1093/plankt/fbr007.It has long been thought that jumping by the ciliate Mesodinium rubrum can enhance its nutrient uptake. However, jumping can be energetically costly and also dangerous by inducing hydrodynamic disturbances detectable to rheotactic predators. Here, a computational fluid dynamics (CFD) model, driven by published empirical data, is developed to simulate the jump-induced unsteady flow as well as chemical field around a self-propelled jumping ciliate. The associated phosphorus uptake, hydrodynamic signal strength, mechanical energy cost and Froude propulsion efficiency are also calculated. An equatorial ciliary belt (ECB), i.e. the morphology used by M. rubrum for propulsion, is considered. For comparison purpose, three other strategies (pulled or pushed by cilia, or towed) are also considered. Comparison of the CFD results among the four strategies considered suggests: (1) jumping enhances phosphorus uptake with simulated values consistent with available field data; (2) the M. rubrum-like propulsion generates the weakest and spatially most limited hydrodynamic disturbance and therefore may effectively minimize the jump-induced predation risk; and (3) the M. rubrum-like propulsion achieves a high Froude propulsion efficiency (~0.78) and is least costly in mechanical energy expenditure among the three self-propelled strategies considered. Thus, using the ECB for propulsion can be essential in ensuring that M. rubrum is a successful ‘fast-jumping’ primary producer.This work was supported by National Science Foundation grants NSF OCE-0323959 & IOS- 0718506 and an award from WHOI’s Ocean Life Institute to H.J

    COVID-19: Is There Evidence for the Use of Herbal Medicines as Adjuvant Symptomatic Therapy?

    Get PDF
    Background: Current recommendations for the self-management of SARS-Cov-2 disease (COVID-19) include self-isolation, rest, hydration, and the use of NSAID in case of high fever only. It is expected that many patients will add other symptomatic/adjuvant treatments, such as herbal medicines. Aims: To provide a benefits/risks assessment of selected herbal medicines traditionally indicated for “respiratory diseases” within the current frame of the COVID-19 pandemic as an adjuvant treatment. Method: The plant selection was primarily based on species listed by the WHO and EMA, but some other herbal remedies were considered due to their widespread use in respiratory conditions. Preclinical and clinical data on their efficacy and safety were collected from authoritative sources. The target population were adults with early and mild flu symptoms without underlying conditions. These were evaluated according to a modified PrOACT-URL method with paracetamol, ibuprofen, and codeine as reference drugs. The benefits/risks balance of the treatments was classified as positive, promising, negative, and unknown. Results: A total of 39 herbal medicines were identified as very likely to appeal to the COVID-19 patient. According to our method, the benefits/risks assessment of the herbal medicines was found to be positive in 5 cases (Althaea officinalis, Commiphora molmol, Glycyrrhiza glabra, Hedera helix, and Sambucus nigra), promising in 12 cases (Allium sativum, Andrographis paniculata, Echinacea angustifolia, Echinacea purpurea, Eucalyptus globulus essential oil, Justicia pectoralis, Magnolia officinalis, Mikania glomerata, Pelargonium sidoides, Pimpinella anisum, Salix sp, Zingiber officinale), and unknown for the rest. On the same grounds, only ibuprofen resulted promising, but we could not find compelling evidence to endorse the use of paracetamol and/or codeine. Conclusions: Our work suggests that several herbal medicines have safety margins superior to those of reference drugs and enough levels of evidence to start a clinical discussion about their potential use as adjuvants in the treatment of early/mild common flu in otherwise healthy adults within the context of COVID-19. While these herbal medicines will not cure or prevent the flu, they may both improve general patient well-being and offer them an opportunity to personalize the therapeutic approaches

    A non-linear three-dimensional model for quantifying microbubble dynamics

    No full text
    A three-dimensional non-linear model for simulating microbubble response to acoustic insonation is presented. A 1 μm radius microbubble stimulated using positive and inverted 2.4 MHz pulses produced radius-time curves that matched (error <10%) with the experimental observation. A bound 2.3 μm radius microbubble insonated using 2.25 MHz 6 cycle pulse was observed to oscillate with max∕min oscillations 45% lower than that of the free microbubble, this correlated (∼10% error) with the observations of Garbin et al. [Appl. Phys. Lett. 90, 114103 (2007)]. The adherent microbubble oscillated asymmetrically in the plan view and symmetrically in the elevation view, consistent with the previous experimental results
    corecore