13 research outputs found
Immune Response to SARS-CoV-2 Third Vaccine in Patients With Rheumatoid Arthritis Who Had No Seroconversion After Primary 2-Dose Regimen With Inactivated or Vector-Based Vaccines
Objective. The aim of this study was to assess the immune response after a third dose of SARS-CoV-2 vaccine in patients with rheumatoid arthritis (RA) with undetectable antibody titers after the primary regimen of 2 doses. Methods. Patients with RA with no seroconversion after 2 doses of SARS-CoV-2 vaccine and who received a third dose of either an mRNA or vector-based vaccine were included. Anti-SARS-CoV-2 IgG antibodies, neutralizing activity, and T cell responses were assessed after the third dose. Results. A total of 21 nonresponder patients were included. At the time of vaccination, 29% were receiving glucocorticoids and 85% biologic disease-modifying antirheumatic drugs (including 6 taking abatacept [ABA] and 4 taking rituximab [RTX]). The majority (95%) received the BNT162b2 vaccine and only one of them received the ChAdOx1 nCoV-19 vaccine. After the third dose, 91% of the patients presented detectable anti-SARS-CoV-2 IgG and 76% showed neutralizing activity. Compared to other treatments, ABA and RTX were associated with the absence of neutralizing activity in 4 out of 5 (80%) patients and lower titers of neutralizing antibodies (median 3, IQR 0-20 vs 8, IQR 4-128; P = 0.20). Specific T cell response was detected in 41% of all patients after the second dose, increasing to 71% after the third dose. The use of ABA was associated with a lower frequency of T cell response (33% vs 87%, P = 0.03). Conclusion. In this RA cohort, 91% of patients who failed to seroconvert after 2 doses of SARS-CoV-2 vaccine presented detectable anti-SARS-CoV-2 IgG after a third dose. The use of ABA was associated with a lower frequency of specific T cell response.Fil: Isnardi, Carolina A.. No especifíca;Fil: Cerda, Osvaldo L.. No especifíca;Fil: Landi, Margarita. Austral University Hospital; LiberiaFil: Cruces, Leonel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Schneeberger, Emilce E.. No especifíca;Fil: Montoro, Claudia Calle. Austral University Hospital; LiberiaFil: Alfaro, María Agustina. No especifíca;Fil: Roldán, Brian M.. No especifíca;Fil: Gómez Vara, Andrea B.. No especifíca;Fil: Giorgis, Pamela. No especifíca;Fil: Ezquer, Roberto Alejandro. No especifíca;Fil: Crespo Rocha, María G. No especifíca;Fil: Reyes Gómez, Camila R.. No especifíca;Fil: de Los Ángeles Correa, Mária. No especifíca;Fil: Rosemffet, Marcos G.. No especifíca;Fil: Abarza, Virginia Carrizo. No especifíca;Fil: Pellet, Santiago Catalan. Austral University Hospital; LiberiaFil: Perandones, Miguel. No especifíca;Fil: Reimundes, Cecilia. Austral University Hospital; LiberiaFil: Longueira, Yesica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Turk, Gabriela Julia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Quiroga, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Laufer, Natalia Lorna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Quintana, Rosana Maris. No especifíca;Fil: de la Vega, María Celina. No especifíca;Fil: Kreplak, Nicolás. No especifíca;Fil: Pifano, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maid, Pablo. Austral University Hospital; LiberiaFil: Pons Estel, Guillermo J.. No especifíca;Fil: Citera, Gustavo. No especifíca
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
XVI International Congress of Control Electronics and Telecommunications: "Techno-scientific considerations for a post-pandemic world intensive in knowledge, innovation and sustainable local development"
Este título, sugestivo por los impactos durante la situación de la Covid 19 en el mundo, y que en Colombia lastimosamente han sido muy críticos, permiten asumir la obligada superación de tensiones sociales, políticas, y económicas; pero sobre todo científicas y tecnológicas.
Inicialmente, esto supone la existencia de una capacidad de la sociedad colombiana por recuperar su estado inicial después de que haya cesado la perturbación a la que fue sometida por la catastrófica pandemia, y superar ese anterior estado de cosas ya que se encontraban -y aún se encuentran- muchos problemas locales mal resueltos, medianamente resueltos, y muchos sin resolver: es decir, habrá que rediseñar y fortalecer una probada resiliencia social existente - producto del prolongado conflicto social colombiano superado parcialmente por un proceso de paz exitoso - desde la tecnociencia local; como lo indicaba Markus Brunnermeier - economista alemán y catedrático de economía de la Universidad de Princeton- en su libro The Resilient Society…La cuestión no es preveerlo todo sino poder reaccionar…aprender a recuperarse rápido.This title, suggestive of the impacts during the Covid 19 situation in the world, and which have unfortunately been very critical in Colombia, allows us to assume the obligatory overcoming of social, political, and economic tensions; but above all scientific and technological.
Initially, this supposes the existence of a capacity of Colombian society to recover its initial state after the disturbance to which it was subjected by the catastrophic pandemic has ceased, and to overcome that previous state of affairs since it was found -and still is find - many local problems poorly resolved, moderately resolved, and many unresolved: that is, an existing social resilience test will have to be redesigned and strengthened - product of the prolonged Colombian social conflict partially overcome by a successful peace process - from local technoscience; As Markus Brunnermeier - German economist and professor of economics at Princeton University - indicates in his book The Resilient Society...The question is not to foresee everything but to be able to react...learn to recover quickly.Bogot
Humoral and T‐cell response to SARS‐CoV‐2 vaccination in patients with rheumatoid arthritis
Objective: The objective of this study was to assess the SARS-CoV-2–specific humoral and T cell response after a two-dose regimen of SARS-CoV-2 vaccine in patients with rheumatoid arthritis (RA). Methods: In this observational study, patients with RA who are ≥18 years of age and vaccinated for SARS-CoV-2 according to the Argentine National Health Ministry's vaccination strategy were included. Anti–SARS-CoV-2 immunoglobulin G (IgG) antibodies (ELISA-COVIDAR test), neutralizing activity (cytotoxicity in VERO cells), and specific T cell response (IFN-γ ELISpot Assay) were assessed after the first and second dose. Results: A total of 120 patients with RA were included. Mostly, homologous regimens were used, including Gam-COVID-Vac (27.5%), ChAdOx1 (24.2%), and BBIBP-CorV (22.5%). The most frequent combination was Gam-COVID-Vac/mRNA-1273 (21.7%). After the second dose, 81.7% presented with anti–SARS-CoV-2 antibodies, 70.0% presented with neutralizing activity, and 65.3% presented with specific T cell response. The use of BBIBP-CorV and treatment with abatacept (ABA) and rituximab (RTX) were associated with undetectable antibodies and no neutralizing activity after two doses. BBIBP-CorV was also associated with the absence of T cell response. The total incidence of adverse events was 357.1 events per 1,000 doses, significantly lower with BBIBP-CorV (166.7 events per 1,000 doses, P < 0.02). Conclusion: In this RA cohort vaccinated with homologous and heterologous regimens against COVID-19, 2 out of 10 patients did not develop anti-SARS-CoV-2 IgG, 70% presented with neutralizing activity, and 65% presented with specific T cell response. The use of BBIBP-CorV was associated with deficient humoral and cellular response, whereas treatment with ABA and RTX resulted in an impaired anti-SARS-CoV-2 IgG formation and neutralizing activity.Fil: Isnardi, Carolina A.. Sociedad Argentina de Reumatología; ArgentinaFil: Landi, Margarita. Sociedad Argentina de Reumatología; ArgentinaFil: Cruces, Leonel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Maid, Pablo. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Calle Montoro, Claudia. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Alfaro, María A.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Roldán, Brian M.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Gómez Vara, Andrea B.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Giorgis, Pamela. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Ezquer, Roberto A.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Crespo Rocha, María G.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Reyes Gómez, Camila R.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Correa, María Á.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Cerda, Osvaldo L.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Rosemffet, Marcos G.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Carrizo Abarza, Virginia. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Catalan Pellet, Santiago. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Perandones, Miguel. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Reimundes, Cecilia. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Longueira, Yesica Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Turk, Gabriela Julia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Quiroga, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Laufer, Natalia Lorna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: de la Vega, María Cecilia. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Citera, Gustavo. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Pons Estel, Guillermo J.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; ArgentinaFil: Schneeberger, Emilce E.. Gobierno de la Ciudad Autónoma de Buenos Aires. Instituto de Rehabilitación Psicofísica; Argentin
Neotropical ornithology: Reckoning with historical assumptions, removing systemic barriers, and reimagining the future
A major barrier to advancing ornithology is the systemic exclusion of professionals from the Global South. A recent special feature, Advances in Neotropical Ornithology, and a shortfalls analysis therein, unintentionally followed a long-standing pattern of highlighting individuals, knowledge, and views from the Global North, while largely omitting the perspectives of people based within the Neotropics. Here, we review current strengths and opportunities in the practice of Neotropical ornithology. Further, we discuss problems with assessing the state of Neotropical ornithology through a northern lens, including discovery narratives, incomplete (and biased) understanding of history and advances, and the promotion of agendas that, while currently popular in the north, may not fit the needs and realities of Neotropical research. We argue that future advances in Neotropical ornithology will critically depend on identifying and addressing the systemic barriers that hold back ornithologists who live and work in the Neotropics: unreliable and limited funding, exclusion from international research leadership, restricted dissemination of knowledge (e.g., through language hegemony and citation bias), and logistical barriers. Moving forward, we must examine and acknowledge the colonial roots of our discipline, and explicitly promote anti-colonial agendas for research, training, and conservation. We invite our colleagues within and beyond the Neotropics to join us in creating new models of governance that establish research priorities with vigorous participation of ornithologists and communities within the Neotropical region. To include a diversity of perspectives, we must systemically address discrimination and bias rooted in the socioeconomic class system, anti-Blackness, anti-Brownness, anti-Indigeneity, misogyny, homophobia, tokenism, and ableism. Instead of seeking individual excellence and rewarding top-down leadership, institutions in the North and South can promote collective leadership. In adopting these approaches, we, ornithologists, will join a community of researchers across academia building new paradigms that can reconcile our relationships and transform science. Spanish and Portuguese translations are available in the Supplementary Material.• Research conducted by ornithologists living and working in Latin America and the Caribbean has been historically and systemically excluded from global scientific paradigms, ultimately holding back ornithology as a discipline.• To avoid replicating systems of exclusion in ornithology, authors, editors, reviewers, journals, scientific societies, and research institutions need to interrupt long-held assumptions, improve research practices, and change policies around funding and publication.• To advance Neotropical ornithology and conserve birds across the Americas, institutions should invest directly in basic field biology research, reward collective leadership, and strengthen funding and professional development opportunities for people affected by current research policies.Peer reviewe
Biodiversity 2016. Status and Trends of Colombian Continental Biodiversity
This third volume of the annual report on biodiversity in Colombia continues the editorial line that begun in 2014. Using novel analytical and graphic proposals, these reports have the goal of communicating the contents to a broad public, making it available for discussion without sacrificing the quality of information. The challenge of communication continues to be a major part of the institutional project, and the new languages with which we are learning to communicate with society and other institutions are an experiment that we expect to be increasingly gratifying. The report for 2017 is already under construction and it counts on new digital technologies so the power of a colombian vital connection may be entirely expressed.
The included content evidences that we are still far away from having a systematic follow-up about most of the topics related to the management of biodiversity and ecosystem services, which is the only way to evaluate the effectiveness of policies and investments made by society. In fact, a limitation that is recognized is that of identifying positive or negative changes that affect different levels of organization of life on this planet; therefore, our global navigation route of the Aichi targets is still to be verified.
An additional purpose of this process includes the invitation of all Colombians to contribute in constructing and maintaining basic monitoring indicators for management since it is impossible to identify long-term trends of flora and fauna in the country without the support of institutions, researchers, and citizens. This challenge is immense in a megadiverse country such as Colombia. For this reason, the report will continue to open its pages to experts, and even indigenous peoples or local communities, for them to present their perspectives about environmental change and its effects on biodiversity in a systematic and documented manner. This has the objective of stimulating the commitment of everyone in the management of biodiversity and ecosystem services. The only way of overcoming the risk of extinction is through the active process of social learning in which all sectors assume a part of the complex responsibility in protecting the forms of life of the country, a roughly counted tenth of all creatures on Earth.
I thank all the people that contributed in this Report, those who have supported us in the phases of production, and all readers and users, who are the ultimate judges of its utility.Bogotá, D. C
Biodiversidad 2016. Estado y Tendencias de la Biodiversidad Continental de Colombia
Esta tercera entrega del reporte anual de la biodiversidad en Colombia profundiza en la línea editorial iniciada el año 2014 mediante nuevas propuestas analíticas y gráficas, con la intención de garantizar que la información llegue a todos los públicos y pueda ser discutida de manera amena sin sacrificio de calidad. La apuesta comunicativa sigue siendo central en el proyecto institucional y los nuevos lenguajes con los que estamos aprendiendo a conversar con la sociedad y las instituciones son un experimento que esperamos sea cada vez más satisfactorio: ya estamos construyendo la versión 2017 con el apoyo de las nuevas tecnologías digitales de manera que la potencia de la conexión vital colombiana
se exprese en toda su capacidad.
Por los contenidos es evidente que aún distamos mucho de tener una capacidad de seguimiento sistemático para la mayoría de temas relativos a la gestión de la biodiversidad y los servicios ecosistémicos, la única manera de evaluar si las medidas de política y las inversiones que realiza la sociedad están teniendo los efectos deseados. De hecho, parte de las limitaciones reconocidas por robustamente los cambios positivos o negativos que afectan los diferentes niveles de organización de la vida planetaria, por lo cual las mismas metas de Aichi, nuestra carta de navegación global,
están pendientes de verificación.
Un propósito adicional de este proceso es la invitación a todos los colombianos para contribuir con la construcción y alimentación de los indicadores básicos de seguimiento a la gestión, ya que es imposible identificar las tendencias de largo plazo en que están inmersas la flora y fauna colombianas sin el apoyo de las instituciones, los investigadores y los ciudadanos: en el país de la megadiversidad, el reto es inmenso. Por este motivo, este reporte irá abriendo sus páginas a expertos, incluso indígenas o de comunidades locales, para que presenten de manera sistemática y documentada sus perspectivas del cambio ambiental y sus efectos en la biodiversidad, con el ánimo de promover el compromiso de todos en su gestión. La única manera de superar el riesgo de extinción es mediante un activo proceso de aprendizajes sociales que haga que todos los sectores asuman una parte
de la compleja responsabilidad que significa proteger todas las formas de vida del país, una décima parte mal contada de las planetarias.
Agradezco a las decenas de personas que contribuyeron con este reporte, a quienes nos han apoyado en todas las etapas de producción y a sus lectores y usuarios, quienes son en último término los jueces de su utilidad.Bogotá, D. C
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)
Background: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. Aim of the study: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). Methods: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. Results: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p < 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. Conclusions: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures