45 research outputs found

    Measurement of Urine Prostaglandin E 2

    No full text

    Monocyte-independent T-cell activation by polyclonal antithymocyte globulins.

    No full text
    International audienceThe in vitro mitogenic properties of polyclonal antithymocyte and antilymphocyte globulins (ATG) on peripheral blood mononuclear cells were investigated. The ATG were mitogenic in a dose-dependent manner with maximal proliferation observed at 250 or 500 micrograms/ml. ATG activated blastogenesis of CD4+, CD8+, and CD57+ (NK cells) lymphocytes. The ATG induced interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) gene expression and lymphokine secretion in cell culture supernatant and IL-2 receptor (CD25) expression. At submitogenic concentrations ATG potentialized the effect of phorbol esters on T cell proliferation, but not that of calcium ionophore. The mitogenic effect of ATG was not abrogated by monocyte depletion indicating that like CD2 monoclonal antibodies (mAbs) ATG activate T cells via a monocyte-independent pathway. CD3 and CD2 mAbs which activate T cells without binding to B surface determinants stimulated the proliferation of B cells and their differentiation into immunoglobulin (Ig)-secreting cells. In contrast, ATG induced only a transient B cell activation, but failed to support B cell differentiation into Ig-secreting cells despite the secretion of IL-2. These properties shared by ATG obtained in horses or rabbits by immunization with different cell types appear to differ from those of other T cell mitogens.The in vitro mitogenic properties of polyclonal antithymocyte and antilymphocyte globulins (ATG) on peripheral blood mononuclear cells were investigated. The ATG were mitogenic in a dose-dependent manner with maximal proliferation observed at 250 or 500 micrograms/ml. ATG activated blastogenesis of CD4+, CD8+, and CD57+ (NK cells) lymphocytes. The ATG induced interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) gene expression and lymphokine secretion in cell culture supernatant and IL-2 receptor (CD25) expression. At submitogenic concentrations ATG potentialized the effect of phorbol esters on T cell proliferation, but not that of calcium ionophore. The mitogenic effect of ATG was not abrogated by monocyte depletion indicating that like CD2 monoclonal antibodies (mAbs) ATG activate T cells via a monocyte-independent pathway. CD3 and CD2 mAbs which activate T cells without binding to B surface determinants stimulated the proliferation of B cells and their differentiation into immunoglobulin (Ig)-secreting cells. In contrast, ATG induced only a transient B cell activation, but failed to support B cell differentiation into Ig-secreting cells despite the secretion of IL-2. These properties shared by ATG obtained in horses or rabbits by immunization with different cell types appear to differ from those of other T cell mitogens

    T cell sensitivity to HLA class I-mediated apoptosis is dependent on interleukin-2 and interleukin-4.

    No full text
    Antibody interaction with a specific epitope of the HLA class I alpha1 domain triggers apoptosis of activated but not resting T and B cells by a pathway which involves neither Fas ligand nor tumor necrosis factor-alpha. We have investigated at which stage of activation and proliferation T cells become sensitive to HLA class I-mediated apoptosis, using two monoclonal antibodies (mAb) which recognize the same monomorphic epitope of the HLA class I alpha1 domain (mAb9O, mouse IgG1, and YTH862, rat IgG2b) and can induce apoptosis of phytohemagglutinin (PHA)-activated peripheral blood lymphocytes. Sensitivity to apoptosis develops after the expression of G1 markers (CD69 expression) but it is accelerated by addition of recombinant interleukin-2 (rIL-2). Blocking the IL-2 pathway by cyclosporin A, FK506, rapamycin, anti-IL-2 or CD25 antibodies, prevented the development of sensitivity to apoptosis. Addition of IL-2 and, to a lesser extent, IL-4, reversed the inhibitory effect of cyclosporin A. Conversely, rIL-7 and recombinant interferon-gamma restored proliferation of peripheral blood lymphocytes stimulated by PHA in the presence of cyclosporin A but did not restore sensitivity to class I-mediated apoptosis. Finally cells stimulated in the presence of the DNA polymerase inhibitor aphidicolin did not enter into S phase of the cell cycle but secreted IL-2 and underwent apoptosis when exposed to mAb90 or YTH862. Together, the data indicate that sensitivity of peripheral T cells to HLA class I-mediated apoptosis depends on both activation signals and IL-2 or IL-4, but does not require cell proliferation. These data suggest that YTH862 and mAb90 might be used for achieving clonal deletion of antigen-activated peripheral T cells in vivo, provided that the IL-2 pathway is not blocked by other immunosuppressive agents
    corecore