6 research outputs found
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task
Objective. To date, the majority of Brain–Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers
A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback
Present day cortical brain–machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients
Partially Mixed Selectivity in Human Posterior Parietal Association Cortex
To clarify the organization of motor representations in posterior parietal cortex, we test how three motor variables (body side, body part, cognitive strategy) are coded in the human anterior intraparietal cortex. All tested movements were encoded, arguing against strict anatomical segregation of effectors. Single units coded for diverse conjunctions of variables, with different dimensions anatomically overlapping. Consistent with recent studies, neurons encoding body parts exhibited mixed selectivity. This mixed selectivity resulted in largely orthogonal coding of body parts, which “functionally segregate” the effector responses despite the high degree of anatomical overlap. Body side and strategy were not coded in a mixed manner as effector determined their organization. Mixed coding of some variables over others, what we term “partially mixed coding,” argues that the type of functional encoding depends on the compared dimensions. This structure is advantageous for neuroprosthetics, allowing a single array to decode movements of a large extent of the body
Neural Prosthetics and Parietal Cortex
In the last decade, research efforts into directly interfacing with the neurons of individuals with motor deficits have increased. The goal of such research is clear: Enable individuals affected by paralysis or amputation to regain control of their environments by manipulating external devices with thought alone. Though the motor cortices are the usual brain areas upon which neural prosthetics depend, research into the parietal lobe and its subregions, primarily in non-human primates, has uncovered alternative areas that could also benefit neural interfaces. Similar to the motor cortical areas, parietal regions can supply information about the trajectories of movements. In addition, the parietal lobe also contains cognitive signals like movement goals and intentions. But, these areas are also known to be tuned to saccadic eye movements, which could interfere with the function of a prosthetic designed to capture motor intentions only. In this thesis, we develop and examine the functionality of a neural prosthetic with a non-human primate model using the superior parietal lobe to examine the effectiveness of such an interface and the effects of unconstrained eye movements in a task that more closely simulates clinical applications. Additionally, we examine methods for improving usability of such interfaces.
The parietal cortex is also believed to contain neural signals relating to monitoring of the state of the limbs through visual and somatosensory feedback. In one of the world’s first clinical neural prosthetics based on the human parietal lobe, we examine the extent to which feedback regarding the state of a movement effector alters parietal neural signals and what the implications are for motor neural prosthetics and how this informs our understanding of this area of the human brain.</p