287 research outputs found
Targeting CXCR4 in AML and ALL
The interaction of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts with the bone marrow microenvironment regulates self-renewal, growth signaling, as well as chemotherapy resistance. The chemokine receptor, CXC receptor 4 (CXCR4), with its ligand chemokine ligand 12 (CXCL12), plays a key role in the survival and migration of normal and malignant stem cells to the bone marrow. High expression of CXCR4 on AML and ALL blasts has been shown to be a predictor of poor prognosis for these diseases. Several small molecule inhibitors, short peptides, antibodies, and antibody drug conjugates have been developed for the purposes of more effective targeting and killing of malignant cells expressing CXCR4. In this review we will discuss recent results and strategies in targeting CXCR4 with these agents in patients with AML or ALL
Mobilized peripheral blood: An updated perspective
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted
Innovations in hematopoietic stem-cell mobilization: A review of the novel CXCR4 inhibitor motixafortide
Hematopoietic stem-cell transplantation (HCT) and stem-cell-based gene therapies rely on the ability to collect sufficient CD34+ hematopoietic stem and progenitor cells (HSPCs), typicall
Development of VLA4 and CXCR4 antagonists for the mobilization of hematopoietic stem and progenitor cells
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization
68Ga-Galmydar: A PET imaging tracer for noninvasive detection of doxorubicin-induced cardiotoxicity
BackgroundCancer patients undergoing Doxorubicin (DOX) treatment are susceptible to acute and chronic cardiac anomalies, including aberrant arrhythmias, ventricular dysfunction, and heart failure. To stratify patients at high risk for DOX -related heart failure (CHF), diagnostic techniques have been sought. While echocardiography is used for monitoring LVEF and LV volumes due to its wide-availability and cost-efficiency, it may not identify early stages of the initiation of DOX-induced systolic heart failure. To address these limitations, PET tracers could also provide noninvasive assessment of early and reversible metabolic changes of the myocardium.ObjectiveHerein, we report a preliminary investigation of 68Ga-Galmydar potential to monitor Dox-induced cardiomyopathy in vivo, ex vivo, and in cellulo employing both nuclear- and optical imaging.Methods and resultsTo assess 68Ga-Galmydar ability for monitoring DOX-induced cardiomyopathy, microPET imaging was performed 5 d post treatment of rats either with a single dose of DOX (15 mg/kg) or vehicle as a control (saline) and images were co-registered for anatomical reference using CT. Following tail-vein injection of the radiotracer in rats at 60 min, micro-PET/CT static scan (10 min acquisition), 68Ga-Galmydar demonstrated 1.91-fold lower uptake in hearts of DOX-treated (standard uptake value; SUV: 0.92, n = 3) rats compared with their vehicle treated (SUV: 1.76, n = 3) control counterparts. For correlation of PET imaging data, post-imaging quantitative biodistribution studies were also performed, wherein excised organs were counted for γ activity, and normalized to injected dose. The post imaging pharmacokinetic data also demonstrated heart uptake values of 2.0 fold lower for DOX treated rats(%ID/g; DOX: 0.44 ± 0.1, n = 3) compared to their vehicle-treated controls (%ID/g; Control: 0.89 ± 0.03, n = 3, p = 0.04). Employing the fluorescent traits of Galmydar, live cell fluorescence imaging indicated a gradual decrease in uptake and retention of Galmydar within mitochondria of H9c2 cells following DOX-treatment, while indicating dose-dependent and time-dependent uptake profiles. Following depolarization of electronegative transmembrane gradients at the mitochondrial membrane, the uptake of the probe was decreased in H9c2 cells, and the uptake profiles were found to be identical, using both fluorescence and radiotracer bioassays. Finally, the decreased uptake of the metalloprobe in H9c2 cells also correlated with caspase-3 expression resulting from DOX-induced cardiotoxicity and cell death.Conclusions68Ga-Galmydar could provide a noninvasive assessment of DOX-related and likely reversible metabolic changes at earliest stages. Further studies with other chemotherapeutics (potentially capable of inducing cardiomyopathy) are underway
Bloch Wavefunction Reconstruction using Multidimensional Photoemission Spectroscopy
Angle-resolved spectroscopy is the most powerful technique to investigate the
electronic band structure of crystalline solids. To completely characterize the
electronic structure of topological materials, one needs to go beyond band
structure mapping and probe the texture of the Bloch wavefunction in
momentum-space, associated with Berry curvature and topological invariants.
Because phase information is lost in the process of measuring photoemission
intensities, retrieving the complex-valued Bloch wavefunction from
photoemission data has yet remained elusive. In this Article, we introduce a
novel measurement methodology and observable in extreme ultraviolet
angle-resolved photoemission spectroscopy, based on continuous modulation of
the ionizing radiation polarization axis. By tracking the energy- and
momentum-resolved amplitude and phase of the photoemission modulation upon
polarization variation, we reconstruct the Bloch wavefunction of prototypical
semiconducting transition metal dichalcogenide 2H-WSe with minimal theory
input. This novel experimental scheme, which is articulated around the
manipulation of the photoionization transition dipole matrix element, in
combination with a simple tight-binding theory, is general and can be extended
to provide insights into the Bloch wavefunction of many relevant crystalline
solids.Comment: 11 pages, 5 figure
Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation
Despite the curative potential of hematopoietic stem cell transplantation (HSCT), conditioning-associated toxicities preclude broader clinical application. Antibody-drug conjugates (ADCs) provide an attractive approach to HSCT conditioning that minimizes toxicity while retaining efficacy. Initial studies of ADC conditioning have largely focused on syngeneic HSCT. However, to treat acute leukemias or induce tolerance for solid organ transplantation, this approach must be expanded to allogeneic HSCT (allo-HSCT). Using murine allo-HSCT models, we show that pharmacologic Janus kinase 1/2 (JAK1/2) inhibition combined with CD45- or cKit-targeted ADCs enables robust multilineage alloengraftment. Strikingly, myeloid lineage donor chimerism exceeding 99% was achievable in fully MHC-mismatched HSCT using this approach. Mechanistic studies using the JAK1/2 inhibitor baricitinib revealed marked impairment of T and NK cell survival, proliferation, and effector function. NK cells were exquisitely sensitive to JAK1/2 inhibition due to interference with IL-15 signaling. Unlike irradiated mice, ADC-conditioned mice did not develop pathogenic graft-versus-host alloreactivity when challenged with mismatched T cells. Finally, the combination of ADCs and baricitinib balanced graft-versus-host disease and graft-versus-leukemia responses in delayed donor lymphocyte infusion models. Our allo-HSCT conditioning strategy exemplifies the promise of immunotherapy to improve the safety of HSCT for treating hematologic diseases
Control of acute myeloid leukemia and generation of immune memory in vivo using AMV564, a bivalent bispecific CD33 x CD3 T cell engager
Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate. When the concentration of bispecific becomes negligible, the effector: target ratio has also shifted, and these activated T cells mediate long-term tumor control. To test the efficacy of AMV564 in vivo, we generated a CD33+ MOLM13CG bioluminescent human cell line and optimized conditions needed to control these cells for 62 days in vivo in NSG mice. Of note, not only did MOLM13CG become undetectable by bioluminescence imaging in response to infusion of human T cells plus AMV564, but also NSG mice that had cleared the tumor also resisted rechallenge with MOLM13CG in spite of no additional AMV564 treatment. In these mice, we identified effector and effector memory human CD4+ and CD8+ T cells in the peripheral blood immediately prior to rechallenge that expanded significantly during the subsequent 18 days. In addition to the anti-tumor effects of AMV564 on the clearance of MOLM13CG cells in vivo, similar effects were seen when primary CD33+ human AML cells were engrafted in NSG mice even when the human T cells made up only 2% of the peripheral blood cells and AML cells made up 98%. These studies suggest that AMV564 is a novel and effective bispecific diabody for the targeting of CD33+ AML that may provide long-term survival advantages in the clinic
- …