31 research outputs found

    Radiative Transfer Model 3.0 integrated into the PALM model system 6.0

    Get PDF
    The Radiative Transfer Model (RTM) is an explicitly resolved three-dimensional multi-reflection radiation model integrated into the PALM modelling system. It is responsible for modelling complex radiative interactions within the urban canopy. It represents a key component in modelling energy transfer inside the urban layer and consequently PALM's ability to provide explicit simulations of the urban canopy at metre-scale resolution. This paper presents RTM version 3.0, which is integrated into the PALM modelling system version 6.0. This version of RTM has been substantially improved over previous versions. A more realistic representation is enabled by the newly simulated processes, e.g. the interaction of longwave radiation with the plant canopy, evapotranspiration and latent heat flux, calculation of mean radiant temperature, and bidirectional interaction with the radiation forcing model. The new version also features novel discretization schemes and algorithms, namely the angular discretization and the azimuthal ray tracing, which offer significantly improved scalability and computational efficiency, enabling larger parallel simulations. It has been successfully tested on a realistic urban scenario with a horizontal size of over 6 million grid points using 8192 parallel processes. © 2021 Pavel Krč et al

    Importance of radiative transfer processes in urban climate models: A study based on the PALM 6.0 model system

    Get PDF
    Including radiative transfer processes within the urban canopy layer into microscale urban climate models (UCMs) is essential to obtain realistic model results. These processes include the interaction of buildings and vegetation with shortwave and longwave radiation, thermal emission, and radiation reflections. They contribute differently to the radiation budget of urban surfaces. Each process requires different computational resources and physical data for the urban elements. This study investigates how much detail modellers should include to parameterize radiative transfer in microscale building-resolving UCMs. To that end, we introduce a stepwise parameterization method to the Parallelized Large-eddy Simulation Model (PALM) system 6.0 to quantify individually the effects of the main radiative transfer processes on the radiation budget and on the flow field. We quantify numerical simulations of both simple and realistic urban configurations to identify the major and the minor effects of radiative transfer processes on the radiation budget. The study shows that processes such as surface and vegetation interaction with shortwave and longwave radiation will have major effects, while a process such as multiple reflections will have minor effects. The study also shows that radiative transfer processes within the canopy layer implicitly affect the incoming radiation since the radiative transfer model is coupled to the radiation model. The flow field changes considerably in response to the radiative transfer processes included in the model. The study identified those processes which are essentially needed to assure acceptable quality of the flow field. These processes are receiving radiation from atmosphere based on the sky-view factors, interaction of urban vegetation with radiation, radiative transfer among urban surfaces, and considering at least single reflection of radiation. Omitting any of these processes may lead to high uncertainties in the model results.publishedVersio

    Different boundary conditions for LES solver Palm 6.0 used for ABL in tunnel experiment

    Get PDF
    summary:We tried to reproduce results measured in the wind tunnel experiment with a CFD simulation provided by numerical model PALM. A realistic buildings layout from the Prague-Dejvice quarter has been chosen as a testing domain because solid validation campaign for PALM simulation of Atmospheric Boundary Layer (ABL) over this quarter was documented in the past. The question of input data needed for such simulation and capability of the model to capture correctly the inlet profile and its turbulence structure provided by the wind-tunnel is discussed in the study. The PALM dynamical core contains a solver for the Navier-Stokes equations. By default, the model uses the Large Eddy Simulation (LES) approach in which the bulk of the turbulent motions is explicitly resolved. It is well validated tool for simulations of the complex air-flow within the real urban canopy and also within its reduced scale provided by wind tunnel experiments. However the computed flow field between the testing buildings did not correspond well to the measured wind velocity in some points. Different setting of the inlet boundary condition was tested but none of them gave completely developed turbulent flow generated by vortex generators and castellated barrier wall place at the entrance of the aerodynamic section of the wind tunnel

    PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model

    Get PDF
    Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results to uncertainties in the material parameters, the domain size, and the general effect of the USM itself. The first version of the USM is limited to the processes most relevant to the study of summer heat waves and serves as a basis for ongoing development which will address additional processes of the urban environment and lead to improvements to extend the utilization of the USM to other environments and conditions

    Sensitivity analysis of the PALM model system 6.0 in the urban environment

    Get PDF
    Sensitivity of the PALM model 6.0 with respect to land-surface and building properties is tested in a real urban environment in the vicinity of a typical crossroads in a densely built-up residential area in Prague, Czech Republic. The turbulence-resolving PALM is able to simulate the urban boundary layer flow for realistic setups. Besides an accurate representation of the relevant physical processes, the model performance also depends on the input data describing the urban setup, namely the building and land-surface properties. Two types of scenario are employed. The first one is the synthetic scenarios altering mainly surface and material parameters such as albedo, emissivity or wall conductivity, testing sensitivity of the model simulations to potentially erroneous input data. Second, urbanistic-type scenarios are analysed, in which commonly considered urban heat island mitigation measures such as greening of the streets or changing surface materials are applied in order to assess the limits of the effects of a particular type of scenario. For the synthetic scenarios, surface parameters used in radiation balance equations are found to be the most sensitive overall followed by the volumetric heat capacity and thermal conductivity of walls. Other parameters show a limited average effect; however, some can still be significant during some parts of the day, such as surface roughness in the morning hours. The second type, the urbanistic scenarios, shows urban vegetation to be the most effective measure, especially when considering both physical and biophysical temperature indicators. The influence of both types of scenario was also tested for air quality, specifically PM2.5 dispersion, which generally shows opposite behaviour to that of thermal indicators; i.e. improved thermal comfort brings deterioration of PM2.5 concentrations. © 2021 Michal Belda et al

    Overview of the PALM model system 6.0

    Get PDF
    In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue.Peer reviewe
    corecore