9 research outputs found

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Get PDF
    The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment

    Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS

    Get PDF
    We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg days was analyzed for WIMPs with mass <30  GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2×10−42  cm2 at 8  GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses <6  GeV/c2

    SuperCDMS status from Soudan and plans for SNOLab

    Get PDF
    Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of Dark Matter. The nature of Dark Matter is yet to be discovered and is one of the biggest questions in Physics. Particle Physics combined with astrophysical measurements of the abundance gives rise to a Dark Matter candidate called Weakly Interacting Massive Particle (WIMP). The low density of WIMPs in the galaxies and the extremely weak nature of the interaction with ordinary matter make detection of the WIMP an extraordinarily challenging task, with abundant fakes from various radioactive and cosmogenic backgrounds with much stronger electromagnetic interaction. The extremely weak nature of the WIMP interaction dictates detectors that have extremely low naturally occurring radioactive background, a large active volume (mass) of sensitive detector material to maximize statistics, a highly efficient detector based rejection mechanism for the dominant electromagnetic background and sophisticated analysis techniques to reject any residual background. This paper describes the status of the SuperCDMS experiment

    Chemokine Receptors and HIV/AIDS

    No full text

    New Developments in LC-MS and Other Hyphenated Techniques

    No full text
    corecore