3 research outputs found

    Drug Target Commons : A Community Effort to Build a Consensus Knowledge Base for Drug-Target Interactions

    Get PDF
    Knowledge of the full target space of bioactive substances, approved and investigational drugs as well as chemical probes, provides important insights into therapeutic potential and possible adverse effects. The existing compound-target bioactivity data resources are often incomparable due to non-standardized and heterogeneous assay types and variability in endpoint measurements. To extract higher value from the existing and future compound target-profiling data, we implemented an open-data web platform, named Drug Target Commons (DTC), which features tools for crowd-sourced compound-target bioactivity data annotation, standardization, curation, and intra-resource integration. We demonstrate the unique value of DTC with several examples related to both drug discovery and drug repurposing applications and invite researchers to join this community effort to increase the reuse and extension of compound bioactivity data.Peer reviewe

    Discovery of MINC1, a GTPase-Activating Protein Small Molecule Inhibitor, Targeting MgcRacGAP

    No full text
    The Rho family of Ras superfamily small GTPases regulates a broad range of biological processes such as migration, differentiation, cell growth and cell survival. Therefore, the availability of small molecule modulators as tool compounds could greatly enhance research on these proteins and their biological function. To this end, we designed a biochemical, high throughput screening assay with complementary follow-up assays to identify small molecule compounds inhibiting MgcRacGAP, a Rho family GTPase activating protein involved in cytokinesis and transcriptionally upregulated in many cancers. We first performed an in-house screen of 20,480 compounds, and later we tested the assay against 342,046 compounds from the NIH Molecular Libraries Small Molecule Repository. Primary screening hit rates were about 1% with the majority of those affecting the primary readout, an enzyme-coupled GDP detection assay. After orthogonal and counter screens, we identified two hits with high selectivity towards MgcRacGAP, compared with other RhoGAPs, and potencies in the low micromolar range. The most promising hit, termed MINC1, was then examined with cell-based testing where it was observed to induce an increased rate of cytokinetic failure and multinucleation in addition to other cell division defects, suggesting that it may act as an MgcRacGAP inhibitor also in cells.Peer reviewe
    corecore