287 research outputs found
Light dazzles from the black box: Whole-cell biosensors are ready to inform on fundamental soil biological processes
Whole-cell biosensors are natural or engineered microorganisms producing signals in response to specific stimuli. This review introduces the use of whole-cell biosensors for the study of the soil system, discuss the recent developments and some current limitations and draws future prospects of the whole-cell biosensors for application to the study of the agro-ecosystems. The review focuses mainly on the lux- and gfp-inserted whole-cell biosensors producing bioluminescence and multicoloured fluorescent proteins, which allow an easy and reproducible detection of the signals from a large number of prokaryotic and eukaryotic soil-borne microorganisms. This review also points out how the whole-cell biosensors indicate the bioavailability of selected analyte, an information that cannot be straight forwardly extrapolated using the chemical methods of soil analysis. However, regardless of the immense progress in biotechnology and genetics that allows to construct whole-cell biosensors for virtually detecting any chemical at ultra low concentrations, the soil still remains the most extreme natural system to be studied with these biotechnological analytical tools. Although a lack of standardization for most of the constructed whole-cell biosensors along with the scarce knowledge of their performance concur to prevent their use in the official methods of soil and environmental analysis, owing to their stability and selectivity we restate that the whole-cell biosensors are ready to provide information on the main processes occurring in soil, and represent unprecedented sensitive tools for improving agriculture and for soil monitorin
Light dazzles from the black box: Whole-cell biosensors are ready to inform on fundamental soil biological processes
Whole-cell biosensors are natural or engineered microorganisms producing signals in response to specific stimuli. This review introduces the use of whole-cell biosensors for the study of the soil system, discuss the recent developments and some current limitations and draws future prospects of the whole-cell biosensors for application to the study of the agro-ecosystems. The review focuses mainly on the lux- and gfp-inserted whole-cell biosensors producing bioluminescence and multicoloured fluorescent proteins, which allow an easy and reproducible detection of the signals from a large number of prokaryotic and eukaryotic soil-borne microorganisms. This review also points out how the whole-cell biosensors indicate the bioavailability of selected analyte, an information that cannot be straight forwardly extrapolated using the chemical methods of soil analysis. However, regardless of the immense progress in biotechnology and genetics that allows to construct whole-cell biosensors for virtually detecting any chemical at ultra low concentrations, the soil still remains the most extreme natural system to be studied with these biotechnological analytical tools. Although a lack of standardization for most of the constructed whole-cell biosensors along with the scarce knowledge of their performance concur to prevent their use in the official methods of soil and environmental analysis, owing to their stability and selectivity we restate that the whole-cell biosensors are ready to provide information on the main processes occurring in soil, and represent unprecedented sensitive tools for improving agriculture and for soil monitorin
Childhood extraordinary daytime urinary frequency-a case series and a systematic literature review
Childhood extraordinary daytime urinary frequency is likely a common but underreported condition characterized by daytime frequent voiding and typically not linked with complaints of burning, urinary incontinence, altered urinary stream, changes in the nighttime voiding pattern, excessive fluid intake and excessive urinary volume. To determine the features and outcome of extraordinary daytime urinary frequency, we report our experience with 14 children and the results of a formal systematic analysis of peer-reviewed English-language literature on this topic. Nineteen case series were found (together with 16 mostly pertinent comments), with each case series providing details on from one to 119 children. On the basis of our experience and the findings of our systematic analysis, we conclude that, in general practice, extraordinary daytime urinary frequency is a common cause of urinary frequency, that the age of such patients is, on average, 6 years and that the micturation abnormalities persist for an average of 6 months. The results of this review must be viewed with an understanding of the limitations of the analysis process, which incorporated data exclusively from case series
Highly connected 3D chromatin networks established by an oncogenic fusion protein shape tumor cell identity.
Cell fate transitions observed in embryonic development involve changes in three-dimensional genomic organization that provide proper lineage specification. Whether similar events occur within tumor cells and contribute to cancer evolution remains largely unexplored. We modeled this process in the pediatric cancer Ewing sarcoma and investigated high-resolution looping and large-scale nuclear conformation changes associated with the oncogenic fusion protein EWS-FLI1. We show that chromatin interactions in tumor cells are dominated by highly connected looping hubs centered on EWS-FLI1 binding sites, which directly control the activity of linked enhancers and promoters to establish oncogenic expression programs. Conversely, EWS-FLI1 depletion led to the disassembly of these looping networks and a widespread nuclear reorganization through the establishment of new looping patterns and large-scale compartment configuration matching those observed in mesenchymal stem cells, a candidate Ewing sarcoma progenitor. Our data demonstrate that major architectural features of nuclear organization in cancer cells can depend on single oncogenes and are readily reversed to reestablish latent differentiation programs
Recommended from our members
EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors.
EWS fusion oncoproteins underlie several human malignancies including Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer driven by EWS-WT1 fusion proteins. Here we combine chromatin occupancy and 3D profiles to identify EWS-WT1-dependent gene regulation networks and target genes. We show that EWS-WT1 is a powerful chromatin activator controlling an oncogenic gene expression program that characterizes primary tumors. Similar to wild type WT1, EWS-WT1 has two isoforms that differ in their DNA binding domain and we find that they have distinct DNA binding profiles and are both required to generate viable tumors that resemble primary DSRCT. Finally, we identify candidate EWS-WT1 target genes with potential therapeutic implications, including CCND1, whose inhibition by the clinically-approved drug Palbociclib leads to marked tumor burden decrease in DSRCT PDXs in vivo. Taken together, our studies identify gene regulation programs and therapeutic vulnerabilities in DSRCT and provide a mechanistic understanding of the complex oncogenic activity of EWS-WT1
3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts
BACKGROUND:
Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data.
METHODS:
In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets.
RESULTS:
Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters.
CONCLUSIONS:
PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This methodology may be integrated into clinical practice and cardiac catheterization programs and has the capability to contribute to clinical decision making even in small hearts
Effect of Long-Term Zinc Pollution on Soil Microbial Community Resistance to Repeated Contamination
The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg−1 soil dry weight) and unpolluted soil (141 mg Zn kg−1 soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg−1 soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g−1 soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil
Design and implementation of multicenter pediatric and congenital studies with cardiovascular magnetic resonance:Big data in smaller bodies
Cardiovascular magnetic resonance (CMR) has become the reference standard for quantitative and qualitative assessment of ventricular function, blood flow, and myocardial tissue characterization. There is a preponderance of large CMR studies and registries in adults; However, similarly powered studies are lacking for the pediatric and congenital heart disease (PCHD) population. To date, most CMR studies in children are limited to small single or multicenter studies, thereby limiting the conclusions that can be drawn. Within the PCHD CMR community, a collaborative effort has been successfully employed to recognize knowledge gaps with the aim to embolden the development and initiation of high-quality, large-scale multicenter research. In this publication, we highlight the underlying challenges and provide a practical guide toward the development of larger, multicenter initiatives focusing on PCHD populations, which can serve as a model for future multicenter efforts.</p
- …