65 research outputs found

    Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Get PDF
    Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions). The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η) ranging between 10<sup>−3</sup> and 10<sup>3</sup> Pascal seconds (Pa s) in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter) are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures

    Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot

    Get PDF
    Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters \u3e∼160 nm, the MAC and absorption Ångström exponent (AAE) values were independent of particle collapse while the single-scatter albedo increased. The MAC values for these larger particles were also size-independent. The mean MAC value at 532 nm for larger particles was 9.1±1.1 m2 g−1, about 17 % higher than that recommended by Bond and Bergstrom (2006), and the AAE was close to unity. Effective, theory-specific complex refractive index (RI) values are derived from the observations with two widely used methods: Lorenz–Mie theory and the Rayleigh–Debye–Gans (RDG) approximation. Mie theory systematically underpredicts the observed absorption cross sections at all wavelengths for larger particles (with x\u3e0.9) independent of the complex RI used, while RDG provides good agreement. (The dimensionless size parameter x=πdp/λ, where dp is particle diameter and λ is wavelength.) Importantly, this implies that the use of Mie theory within air quality and climate models, as is common, likely leads to underpredictions in the absorption by BC, with the extent of underprediction depending on the assumed BC size distribution and complex RI used. We suggest that it is more appropriate to assume a constant, size-independent (but wavelength-specific) MAC to represent absorption by uncoated BC particles within models

    Adsorptive uptake of water by semisolid secondary organic aerosols

    Get PDF
    Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.Peer reviewe

    Sucrose diffusion in aqueous solution.

    Get PDF
    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle

    Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass

    Full text link
    Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O-3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) x 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O-3 uptake at very low humidity suggests contribution of a self-reaction of O-3 on the surface

    Kinetics, mechanisms and ionic liquids in the uptake of n-butylamine onto low molecular weight dicarboxylic acids

    Full text link
    Atmospheric particles adversely affect visibility, health, and climate, yet the kinetics and mechanisms of particle formation and growth are poorly understood. Multiphase reactions between amines and dicarboxylic acids (diacids) have been suggested to contribute. In this study, the reactions of n-butylamine (BA) with solid C3-C8 diacids were studied at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. Uptake coefficients for amines on the diacids with known geometric surface areas were measured at initial amine concentrations from (3-50) × 1011 cm-3. Uptake coefficients ranged from 0.7 ± 0.1 (2σ) for malonic acid (C3) to <10-6 for suberic acid (C8), show an odd-even carbon number effect, and decrease with increasing chain length within each series. Butylaminium salts formed from evaporation of aqueous solutions of BA with C3, C5 and C7 diacids (as well as C8) were viscous liquids, suggesting that ionic liquids (ILs) form on the surface during the reactions of gas phase amine with the odd carbon diacids. Predictions from the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) were quantitatively consistent with uptake occurring via dissolution of the underlying diacid into the IL layer and reaction with amine taken up from the gas phase. The butylaminium salts formed from the C4 and C6 diacids were solids, and their uptake coefficients were smaller. These experiments and kinetic modeling demonstrate the unexpected formation of ILs in a gas-solid reaction, and suggest that ILs should be considered under some circumstances in atmospheric processes

    Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride

    No full text
    As the relative humidity varies from high to low values in the atmosphere, particles containing organic species and inorganic salts may undergo liquid–liquid phase separation. The majority of the laboratory work on this subject has used ammonium sulfate as the inorganic salt. In the following we studied liquid–liquid phase separation in particles containing organics mixed with the following salts: ammonium sulfate, ammonium bisulfate, ammonium nitrate and sodium chloride. In each experiment one organic was mixed with one inorganic salt and the liquid–liquid phase separation relative humidity (SRH) was determined. Since we studied 23 different organics mixed with four different salts, a total of 92 different particle types were investigated. Out of the 92 types, 49 underwent liquid–liquid phase separation. For all the inorganic salts, liquid–liquid phase separation was never observed when the oxygen-to-carbon elemental ratio (O : C) &geq; 0.8 and was always observed for O : C < 0.5. For 0.5 &leq; O : C < 0.8, the results depended on the salt type. Out of the 23 organic species investigated, the SRH of 20 organics followed the trend: (NH4)2SO4 &geq; NH4HSO4 &geq; NaCl &geq; NH4NO3. This trend is consistent with previous salting out studies and the Hofmeister series. Based on the range of O : C values found in the atmosphere and the current results, liquid–liquid phase separation is likely a frequent occurrence in both marine and non-marine environments

    “Virtual Injector” Flow Tube Method for Measuring Relative Rates Kinetics of Gas-Phase and Aerosol Species

    No full text
    A new method for measuring gas-phase and aerosol reaction kinetics is described in which the gas flow, itself, acts as a ”virtual injector” continuously increasing the contact time in analogy to conventional movable-injector kinetics techniques. In this method a laser is directed down the length of a flow tube, instantly initiating reaction by photodissociation of a precursor species at every point throughout the flow tube. Key tropospheric reactants such as OH, Cl, NO<sub>3</sub>, and O<sub>3</sub> can be generated with nearly uniform concentrations along the length of the flow tube in this manner using 355 nm radiation from the third harmonic of a Nd:YAG laser. As the flow travels down the flow tube, both the gas-phase and particle-phase species react with the photogenerated radicals or O<sub>3</sub> for increasingly longer time before exiting and being detected. The advantages of this method are that (1) any wall loss of gas-phase and particle species is automatically accounted for, (2) the reactions are conducted under nearly pseudo-first-order conditions, (3) the progress of the reaction is followed as a continuous function of reaction time instead of reactant concentration, (4) data collection is quick with an entire decay trace being collected in as little as 1 min, (5) relative rates of several species can be measured simultaneously, and (6) bimolecular rate constants at least as small as <i>k</i> = 10<sup>–17</sup> (cm<sup>3</sup>/molecule)/s, or aerosol uptake coefficients at least as small as γ = 10<sup>–4</sup>, can be measured. Using the virtual injector technique with an aerosol chemical ionization mass spectrometer (CIMS) as a detector, examples of gas-phase relative rates and uptake by oleic acid particles are given for OH, Cl, NO<sub>3</sub>, and O<sub>3</sub> reactions with most agreeing to within 20% of published values, where available
    corecore