260 research outputs found

    Analysis of the early immune response to infection by infectious bursal disease virus in chickens differing in their resistance to the disease

    Get PDF
    Chicken whole-genome gene expression arrays were used to analyze the host response to infection by infectious bursal disease virus (IBDV). Spleen and bursal tissue were examined from control and infected birds at 2, 3, and 4 days postinfection from two lines that differ in their resistance to IBDV infection. The host response was evaluated over this period, and differences between susceptible and resistant chicken lines were examined. Antiviral genes, including IFNA, IFNG, MX1, IFITM1, IFITM3, and IFITM5, were upregulated in response to infection. Evaluation of this gene expression data allowed us to predict several genes as candidates for involvement in resistance to IBDV. © 2015, American Society for Microbiology

    Experienced physicians benefit from analyzing initial diagnostic hypotheses

    Get PDF
    Background: Most incorrect diagnoses involve at least one cognitive error, of which premature closure is the most prevalent. While metacognitive strategies can mitigate premature closure in inexperienced learners, these are rarely studied in experienced physicians. Our objective here was to evaluate the effect of analytic information processing on diagnostic performance of nephrologists and nephrology residents. Methods: We asked nine nephrologists and six nephrology residents at the University of Calgary and Glasgow University to diagnose ten nephrology cases. We provided presenting features along with contextual information, after which we asked for an initial diagnosis. We then primed participants to use either hypothetico-deductive reasoning or scheme-inductive reasoning to analyze the remaining case data and generate a final diagnosis. Results: After analyzing initial hypotheses, both nephrologists and residents improved the accuracy of final diagnoses (31.1% vs. 65.6%, p < 0.001, and 40.0% vs. 70.0%, p < 0.001, respectively). We found a significant interaction between experience and analytic processing strategy (p = 0.002): nephrology residents had significantly increased odds of diagnostic success when using scheme-inductive reasoning (odds ratio [95% confidence interval] 5.69 [1.59, 20.33], p = 0.007), whereas the performance of experienced nephrologists did not differ between strategies (odds ratio 0.57 [0.23, 1.39], p = 0.2). Discussion: Experienced nephrologists and nephrology residents can improve their performance by analyzing initial diagnostic hypotheses. The explanation of the interaction between experience and the effect of different reasoning strategies is unclear, but may relate to preferences in reasoning strategy, or the changes in knowledge structure with experience

    The Aerotactic Response of Caulobacter crescentus

    Get PDF
    Many motile microorganisms are able to detect chemical gradients in their surroundings to bias their motion toward more favorable conditions. In this study, we observe the swimming patterns of Caulobacter crescentus, a uniflagellated bacterium, in a linear oxygen gradient produced by a three-channel microfluidic device. Using low-magnification dark-field microscopy, individual cells are tracked over a large field of view and their positions within the oxygen gradient are recorded over time. Motor switching events are identified so that swimming trajectories are deconstructed into a series of forward and backward swimming runs. Using these data, we show that C. crescentus displays aerotactic behavior by extending the average duration of forward swimming runs while moving up an oxygen gradient, resulting in directed motility toward oxygen sources. Additionally, the motor switching response is sensitive both to the steepness of the gradient experienced and to background oxygen levels, exhibiting a logarithmic response

    Hydrogen trapping by VC precipitates and structural defects in a high strength Fe-Mn-C steel studied by small-angle neutron scattering

    Get PDF
    The trapping of hydrogen by VC precipitates and structural defects in high strength Fe-Mn-C steel was studied by small angle neutron scattering. No interaction between H and V in solid solution has been detected but a significant interaction between H and structural defects introduced by plastic deformation has been measured. This last effect was reversible upon outgassing of the H. Moreover a significant interaction between H and VC precipitates has been measured; 5 ppm wt. of H could be trapped in the precipitates. This is consistent with the homogeneous trapping of H within the precipitates rather than at the precipitate/matrix interface

    The origin of internal genes contributes to the replication and transmission fitness of H7N9 avian influenza virus

    Get PDF
    H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo , with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat

    Doggie DNA: Exploring the relationship between genes and appearance in Canis familiaris

    Get PDF
    Canis familiaris (the domestic dog) exhibits incredible diversity in size, build, and overall appearance. The goal of our experiment was to explore the connection between the genotype and phenotype of an organism. One variable feature in dogs is the presence of furnishings, or a “moustache” and “eyebrows” displayed by many popular breeds including most terriers. Growth of furnishings is controlled by a gene called R-spondin 2 (RSPO2). There are two major RSPO2 alleles in the C. familiaris population: an ancestral allele also found in wolves, and an allele with a 167 bp insertion. In this study, we analyzed RSPO2 genotype in over 40 dogs. We isolated DNA from cheek swabs and used the polymerase chain reaction to amplify a portion of the RSPO2 gene. PCR products were analyzed by agarose gel electrophoresis. Our results show that dogs lacking furnishings are homozygous for the shorter ancestral allele, whereas dogs with furnishings have either one or two RSPO2 insertion alleles. These results indicate that the insertion allele acts in a dominant fashion to influence the pattern of muzzle fur growth.https://scholarworks.merrimack.edu/rcac_2025_posters/1167/thumbnail.jp

    Assessing changes in global fire regimes

    Get PDF
    PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, Région Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe

    High aboveground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40-50 per cent of terrestrial vegetation carbon(1). However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests(2). Owing to climatic and soil changes with increasing elevation(3), AGC stocks are lower in tropical montane forests compared with lowland forests(2). Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network(4) and about 70 per cent and 32 per cent higher than averages from plot networks in montane(2,5,6) and lowland(7) forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa(8). We find that the low stem density and high abundance of large trees of African lowland forests(4) is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse(9,10) and carbon-rich ecosystems. The aboveground carbon stock of a montane African forest network is comparable to that of a lowland African forest network and two-thirds higher than default values for these montane forests.Peer reviewe

    Extremism and Social Learning

    Full text link
    corecore