63 research outputs found
A Data-Oriented Approach to Semantic Interpretation
In Data-Oriented Parsing (DOP), an annotated language corpus is used as a
stochastic grammar. The most probable analysis of a new input sentence is
constructed by combining sub-analyses from the corpus in the most probable way.
This approach has been succesfully used for syntactic analysis, using corpora
with syntactic annotations such as the Penn Treebank. If a corpus with
semantically annotated sentences is used, the same approach can also generate
the most probable semantic interpretation of an input sentence. The present
paper explains this semantic interpretation method, and summarizes the results
of a preliminary experiment. Semantic annotations were added to the syntactic
annotations of most of the sentences of the ATIS corpus. A data-oriented
semantic interpretation algorithm was succesfully tested on this semantically
enriched corpus.Comment: 10 pages, Postscript; to appear in Proceedings Workshop on
Corpus-Oriented Semantic Analysis, ECAI-96, Budapes
Data-Oriented Language Processing. An Overview
During the last few years, a new approach to language processing has started
to emerge, which has become known under various labels such as "data-oriented
parsing", "corpus-based interpretation", and "tree-bank grammar" (cf. van den
Berg et al. 1994; Bod 1992-96; Bod et al. 1996a/b; Bonnema 1996; Charniak
1996a/b; Goodman 1996; Kaplan 1996; Rajman 1995a/b; Scha 1990-92; Sekine &
Grishman 1995; Sima'an et al. 1994; Sima'an 1995-96; Tugwell 1995). This
approach, which we will call "data-oriented processing" or "DOP", embodies the
assumption that human language perception and production works with
representations of concrete past language experiences, rather than with
abstract linguistic rules. The models that instantiate this approach therefore
maintain large corpora of linguistic representations of previously occurring
utterances. When processing a new input utterance, analyses of this utterance
are constructed by combining fragments from the corpus; the
occurrence-frequencies of the fragments are used to estimate which analysis is
the most probable one.
In this paper we give an in-depth discussion of a data-oriented processing
model which employs a corpus of labelled phrase-structure trees. Then we review
some other models that instantiate the DOP approach. Many of these models also
employ labelled phrase-structure trees, but use different criteria for
extracting fragments from the corpus or employ different disambiguation
strategies (Bod 1996b; Charniak 1996a/b; Goodman 1996; Rajman 1995a/b; Sekine &
Grishman 1995; Sima'an 1995-96); other models use richer formalisms for their
corpus annotations (van den Berg et al. 1994; Bod et al., 1996a/b; Bonnema
1996; Kaplan 1996; Tugwell 1995).Comment: 34 pages, Postscrip
Discontinuous Data-Oriented Parsing: A mildly context-sensitive all-fragments grammar
Recent advances in parsing technology have made treebank parsing with discontinuous constituents possible, with parser output of competitive quality (Kallmeyer and Maier, 2010). We apply Data-Oriented Parsing (DOP) to a grammar formalism that allows for discontinuous trees (LCFRS). Decisions during parsing are conditioned on all possible fragments, resulting in improved performance. Despite the fact that both DOP and discontinuity present formidable challenges in terms of computational complexity, the model is reasonably efficient, and surpasses the state of the art in discontinuous parsing.
Data-Oriented Parsing with discontinuous constituents and function tags
Statistical parsers are e ective but are typically limited to producing projective dependencies or constituents. On the other hand, linguisti- cally rich parsers recognize non-local relations and analyze both form and function phenomena but rely on extensive manual grammar development. We combine advantages of the two by building a statistical parser that produces richer analyses.Â
We investigate new techniques to implement treebank-based parsers that allow for discontinuous constituents. We present two systems. One system is based on a string-rewriting Linear Context-Free Rewriting System (LCFRS), while using a Probabilistic Discontinuous Tree Substitution Grammar (PDTSG) to improve disambiguation performance. Another system encodes the discontinuities in the labels of phrase structure trees, allowing for efficient context-free grammar parsing.
The two systems demonstrate that tree fragments as used in tree-substitution grammar improve disambiguation performance while capturing non-local relations on an as-needed basis. Additionally, we present results of models that produce function tags, resulting in a more linguistically adequate model of the data. We report substantial accuracy improvements in discontinuous parsing for German, English, and Dutch, including results on spoken Dutch
A DOP model for semantic interpretation
In data-oriented language processing, an annotated language corpus is used as a stochastic grammar. The most probable analysis of a new sentence is constructed by combining fragments from the corpus in the most probable way. This approach has been successfully used for syntactic analysis, using corpora with syntactic annota- tions such as the Penn Tree-bank. If a cor- pus with semantically annotated sentences is used, the same approach can also gen- erate the most probable semantic interpretation of an input sentence. The present paper explains this semantic interpretation method. A data-oriented semantic inter- pretation algorithm was tested on two semantically annotated corpora: the English ATIS corpus and the Dutch OVIS corpus
- …