27 research outputs found

    Polyacrolein microspheres

    Get PDF
    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration

    Ionene modified small polymeric beads

    Get PDF
    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension

    Polyacrolein microspheres

    Get PDF
    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration

    Ionene polymers for selectively inhibiting the vitro growth of malignant cells

    Get PDF
    Ionene polymers of the structure ##STR1## WHERE X AND Y ARE INTEGERS FROM 3 TO 16, Z.sup.- is an anion such as a halogen and n is an integer from 50 to 150 are found to bind negatively charged mammalian cells such as malignant cells and can be utilized to selectively inhibit the growth of malignant cells in vitro

    Cationic vinyl pyridine copolymers and products thereof

    Get PDF
    Quaternized, cross-linked, insoluble copolymers of unsubstituted and substituted vinyl pyridines and a dihalo organic compound are spontaneously formed at ambient temperature on mixing the two monomers in bulk, in solution or in suspension. The amount of cross-linking may be varied according to the composition and reaction conditions. The polymer product exhibits ion exchange capacity and undergoes a reversible color change from black at a pH above 7 to yellow at a pH below 7. The polymer may be formed in the presence of preformed polymers, substrates such as porous or impervious particles or films to deposit an ion exchange film in situ or on the surface of the substrate. The coated or resin impregnated substrate may be utilized for separation of anionic species from aqueous solution

    Impregnated metal-polymeric functional beads

    Get PDF
    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins

    Impregnated metal-polymeric functional beads

    Get PDF
    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins

    Microsphere coated substrate containing reactive aldehyde groups

    Get PDF
    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials

    Polyvinyl pyridine microspheres

    Get PDF
    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate

    Novel polyelectrolytes

    Get PDF
    Cationic polyelectrolytes are formed by the polymerization in absence of oxygen of a monomer of the general formula: ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers. Segments of the linear polymer may be attached to or formed in the presence of polyfunctional reactive tertiary amines or halogen polymeric substrates or polyfunctional lower molecular reactive polyfunctional substrates to form branched or star polyelectrolytes by a quaternization polymerization reaction
    corecore