71 research outputs found

    Magnetic properties of single nanomagnets: EMCD on FePt nanoparticles

    Full text link
    Energy-loss magnetic chiral dichroism (EMCD) allows for the quantification of magnetic properties of materials at the nanometer scale. It is shown that with the support of simulations that help to identify the optimal conditions for a successful experiment and upon implementing measurement routines that effectively reduce the noise floor, EMCD measurements can be pushed towards quantitative magnetic measurements even on individual nanoparticles. With this approach, the ratio of orbital to spin magnetic moments for the Fe atoms in a single L101_0 ordered FePt nanoparticle is determined to be ml/ms=0.08±0.02{m_l}/{m_s} = 0.08 \pm 0.02. This finding is in good quantitative agreement with the results of XMCD ensemble measurements.Comment: 35 pages, 10 figure

    Induction Mapping of the 3D-Modulated Spin Texture of Skyrmions in Thin Helimagnets

    Full text link
    Envisaged applications of skyrmions in magnetic memory and logic devices crucially depend on the stability and mobility of these topologically non-trivial magnetic textures in thin films. We present for the first time quantitative maps of the magnetic induction that provide evidence for a 3D modulation of the skyrmionic spin texture. The projected in-plane magnetic induction maps as determined from in-line and off-axis electron holography carry the clear signature of Bloch skyrmions. However, the magnitude of this induction is much smaller than the values expected for homogeneous Bloch skyrmions that extend throughout the thickness of the film. This finding can only be understood, if the underlying spin textures are modulated along the out-of-plane z direction. The projection of (the in-plane magnetic induction of) helices is further found to exhibit thickness-dependent lateral shifts, which show that this z modulation is accompanied by an (in-plane) modulation along the x and y directions

    Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction

    Get PDF
    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of PdxAu-Pt core-shell aerogels comprised of an ultrathin Pt shell and a composition-tunable PdxAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd-transition metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiency for oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg-1Pt and 2.53 mA cm-2, which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts

    Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains

    Get PDF
    Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications,such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm

    Monolithic growth of ultra-thin Ge nanowires on Si(001)

    Full text link
    Self-assembled Ge wires with a height of only 3 unit cells and a length of up to 2 micrometers were grown on Si(001) by means of a catalyst-free method based on molecular beam epitaxy. The wires grow horizontally along either the [100] or the [010] direction. On atomically flat surfaces, they exhibit a highly uniform, triangular cross section. A simple thermodynamic model accounts for the existence of a preferential base width for longitudinal expansion, in quantitative agreement with the experimental findings. Despite the absence of intentional doping, first transistor-type devices made from single wires show low-resistive electrical contacts and single hole transport at sub-Kelvin temperatures. In view of their exceptionally small and self-defined cross section, these Ge wires hold promise for the realization of hole systems with exotic properties and provide a new development route for silicon-based nanoelectronics.Comment: 23 pages, 5 figure
    • …
    corecore