27 research outputs found
Challenges in assessing and managing multi-hazard risks: a European stakeholders perspective
The latest evidence suggests that multi-hazards and their interrelationships (e.g., triggering, compound, and consecutive hazards) are becoming more frequent across Europe, underlying a need for resilience building by moving from single-hazard-focused to multi-hazard risk assessment and management. Although significant advancements were made in our understanding of these events, mainstream practice is still focused on risks due to single hazards (e.g., flooding, earthquakes, droughts), with a limited understanding of the stakeholder needs on the ground. To overcome this limitation, this paper sets out to understand the challenges for moving towards multi-hazard risk management through the perspective of European stakeholders. Based on five workshops across different European pilots (Danube Region, Veneto Region, Scandinavia, North Sea, and Canary Islands) and an expert workshop, we identify five prime challenges: i) governance, ii) knowledge of multi-hazards and multi-risks, iii) existing approaches to disaster risk management, iv) translation of science to policy and practice, and v) lack of data. These challenges are inherently linked and cannot be tackled in isolation with path dependency posing a significant hurdle in transitioning from single- to multi-hazard risk management. Going forward, we identify promising approaches for overcoming some of the challenges, including emerging approaches for multi-hazard characterisation, a common understanding of terminology, and a comprehensive framework for guiding multi-hazard risk assessment and management. We argue for a need to think beyond natural hazards and include other threats in creating a comprehensive overview of multi-hazard risks, as well as promoting thinking of multi-hazard risk reduction in the context of larger development goals
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Genotype-phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders.
BACKGROUND
We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder.
METHODS
Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays.
RESULTS
We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype.
CONCLUSIONS
Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories
High resolution contact probing of the Lrp-like DNA-binding protein Ss-Lrp from the hyperthermoacidophilic crenarchaeote Sulfolobus solfataricus P2
Ss-Lrp, from Sulfolobus solfataricus, is an archaeal homologue of the global bacterial regulator Lrp (Leucine-responsive regulatory protein), which out of all genome-encoded proteins is most similar to Escherichia coli Lrp (E-value of 5.6 e-14). The recombinant protein has been purified as a 68 kDa homotetramer. The specific binding of Ss-Lrp to its own control region is suggestive of negative autoregulation. A high resolution contact map of Ss-Lrp binding was established by DNase I and hydroxyl radical footprinting, small non-intercalating groove-specific ligand-binding interference, and various base-specific premodification and base removal binding interference techniques. We show that Ss-Lrp binds one face of the DNA helix and establishes the most salient contacts with two major groove segments and the intervening minor groove, in a region that overlaps the TATA-box and BRE promoter elements. Therefore, Ss-Lrp most likely exerts autoregulation by preventing promoter recognition by TBP and TFB. Moreover, the results demonstrate profound Ss-Lrp induced structural alterations of sequence stretches flanking the core contact site, and reveal that the deformability of these regions significantly contributes to binding selectivity.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe