3,234 research outputs found
Derivation of effective spin models from a three band model for CuO_2-planes
The derivation of effective spin models describing the low energy magnetic
properties of undoped CuO_2-planes is reinvestigated. Our study aims at a
quantitative determination of the parameters of effective spin models from
those of a multi-band model and is supposed to be relevant to the analysis of
recent improved experimental data on the spin wave spectrum of La_2CuO_4.
Starting from a conventional three-band model we determine the exchange
couplings for the nearest and next-nearest neighbor Heisenberg exchange as well
as for 4- and 6-spin exchange terms via a direct perturbation expansion up to
12th (14th for the 4-spin term) order with respect to the copper-oxygen hopping
t_pd. Our results demonstrate that this perturbation expansion does not
converge for hopping parameters of the relevant size. Well behaved
extrapolations of the couplings are derived, however, in terms of Pade
approximants. In order to check the significance of these results from the
direct perturbation expansion we employ the Zhang-Rice reformulation of the
three band model in terms of hybridizing oxygen Wannier orbitals centered at
copper ion sites. In the Wannier notation the perturbation expansion is
reorganized by an exact treatment of the strong site-diagonal hybridization.
The perturbation expansion with respect to the weak intersite hybridizations is
calculated up to 4th order for the Heisenberg coupling and up to 6th order for
the 4-spin coupling. It shows excellent convergence and the results are in
agreement with the Pade approximants of the direct expansion. The relevance of
the 4-spin coupling as the leading correction to the nearest neighbor
Heisenberg model is emphasized.Comment: 27 pages, 10 figures. Changed from particle to hole notation, right
value for the charge transfer gap used; this results in some changes in the
figures and a higher value of the ring exchang
Thermodynamics of Adiabatically Loaded Cold Bosons in the Mott Insulating Phase of One-Dimensional Optical Lattices
In this work we give a consistent picture of the thermodynamic properties of
bosons in the Mott insulating phase when loaded adiabatically into
one-dimensional optical lattices. We find a crucial dependence of the
temperature in the optical lattice on the doping level of the Mott insulator.
In the undoped case, the temperature is of the order of the large onsite
Hubbard interaction. In contrast, at a finite doping level the temperature
jumps almost immediately to the order of the small hopping parameter. These two
situations are investigated on the one hand by considering limiting cases like
the atomic limit and the case of free fermions. On the other hand, they are
examined using a quasi-particle conserving continuous unitary transformation
extended by an approximate thermodynamics for hardcore particles.Comment: 10 pages, 6 figure
Rapport fait au nom de la commission des finances et des budgets sur la proposition de la Commission des Communautés européennes an Conseil (doc. 4/72-III) relative à une directive concernant une accise hàrmonisée sur le vin. Documents de séance 1972-1973. Document 157/72. 31 octobre 1972 = Report drawn up on behalf of the Committee on Finance and Budgets on the proposal from the Commission of the European Communities to the Council (Doc 4/72-III) for a Directive on an excise duty on wine. Meeting Documents 1972-1973. Document 157/72. October 31, 1972
Report drawn up on behalf of the Committee for Finance and Budgets on the proposal from the Commission of the European Communities to the Council (Doc. 4/72-III) for a directive on a harmonized excise duty on wine. EP Working Document, Document 1972-1973 157/72, 26 March 1973
Report drawn up on behalf of the Legal Affairs Committee on the proposal from the Commission of the European Communities to the Council (Doc. 22/72) for a regulation concerning legislation for the settlement of labour disputes in the Community. EP Working Documents, Document 261/72, 11 January 1973
Temperature in One-Dimensional Bosonic Mott insulators
The Mott insulating phase of a one-dimensional bosonic gas trapped in optical
lattices is described by a Bose-Hubbard model. A continuous unitary
transformation is used to map this model onto an effective model conserving the
number of elementary excitations. We obtain quantitative results for the
kinetics and for the spectral weights of the low-energy excitations for a broad
range of parameters in the insulating phase. By these results, recent Bragg
spectroscopy experiments are explained. Evidence for a significant temperature
of the order of the microscopic energy scales is found.Comment: 8 pages, 7 figure
Fabric Cooling by Water Evaporation
Clothing can provide safety and comfort for persons exposed to both cold and hot thermal environments. To assess the potential impact of clothing moisture and wetness on fabric cooling, a series of wind-tunnel tests was conducted to quantify the evaporative cooling capacity of selected fabric samples. Single-layer cotton, polyester, nylon and silk were evaluated. The results showed that onset and magnitude of evaporative cooling was determined by the amount of water contained in a fabric sample. The results also showed that an exposed skin exhibited more cooling when covered with a fabric than when it was not. The information obtained helps better understand the evaporative cooling process for fabrics and assist in the selection of garment materials that optimize worker comfort and safety
- …
