206 research outputs found
Sex differences in zonulin in affective disorders and associations with current mood symptoms
Zonulin measurement was funded by Institut Allergosan (Graz, Austria).Introduction: The bidirectional connection between the brain and the gut within psychiatric entities has gained increasing scientific attention over the last years. As a regulator of intestinal permeability, zonulin acts as a key player on the interface of this interplay. Like several psychiatric disorders, intestinal permeability was associated with inflammation in previous findings. Methods: In this study we explored differences in zonulin serum levels in currently depressed (n = 55) versus currently euthymic (n = 37) individuals with an affective disorder. Further, we explored sex differences and possible influences on zonulin and affective symptoms like medication, age, body mass index, and smoking status. Results: Serum zonulin was significantly higher in females than in men independent from affective status (z = -2.412, p = .016). More specifically, females in the euthymic subgroup had higher zonulin levels than euthymic men (z = -2.114, p = .035). There was no difference in zonulin serum levels in individuals taking or not taking a specific psychopharmacotherapy. We found no correlation between zonulin serum levels and depression severity. Discussion: Increased serum zonulin levels as a proxy for increased intestinal permeability in women may indicate a state of elevated susceptibility for depression-inducing stimuli.Publisher PDFPeer reviewe
Recommended from our members
A systematic review of associations between functional MRI activity and polygenic risk for schizophrenia and bipolar disorder
Genetic factors account for up to 80% of the liability for schizophrenia (SCZ) and bipolar disorder (BD). Genome-wide association studies have successfully identified several genes associated with increased risk for both disorders. This has allowed researchers to model the aggregate effect of genes associated with disease status and create a polygenic risk score (PGRS) for each individual. The interest in imaging genetics using PGRS has grown in recent years, with several studies now published. We have conducted a systematic review to examine the effects of PGRS of SCZ, BD and cross psychiatric disorders on brain function and connectivity using fMRI data. Results indicate that the effect of genetic load for SCZ and BD on brain function affects task-related recruitment, with frontal areas having a more prominent role, independent of task. Additionally, the results suggest that the polygenic architecture of psychotic disorders is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions. Future imaging genetics studies with large samples, especially population studies, would be uniquely informative in mapping the spatial distribution of the genetic risk to psychiatric disorders on brain processes during various cognitive tasks and may lead to the discovery of biological pathways that could be crucial in mediating the link between genetic factors and alterations in brain networks
Variations in seasonal solar insolation are associated with a history of suicide attempts in bipolar I disorder
Background: Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods: Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sun’s electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results: This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p < 0.01. Conclusion: A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed
Exploratory study of ultraviolet B (UVB) radiation and age of onset of bipolar disorder
Background: Sunlight contains ultraviolet B (UVB) radiation that triggers the production of vitamin D by skin. Vitamin D has widespread effects on brain function in both developing and adult brains. However, many people live at latitudes (about > 40 N or S) that do not receive enough UVB in winter to produce vitamin D. This exploratory study investigated the association between the age of onset of bipolar I disorder and the threshold for UVB sufficient for vitamin D production in a large global sample. Methods: Data for 6972 patients with bipolar I disorder were obtained at 75 collection sites in 41 countries in both hemispheres. The best model to assess the relation between the threshold for UVB sufficient for vitamin D production and age of onset included 1 or more months below the threshold, family history of mood disorders, and birth cohort. All coefficients estimated at P ≤ 0.001. Results: The 6972 patients had an onset in 582 locations in 70 countries, with a mean age of onset of 25.6 years. Of the onset locations, 34.0% had at least 1 month below the threshold for UVB sufficient for vitamin D production. The age of onset at locations with 1 or more months of less than or equal to the threshold for UVB was 1.66 years younger. Conclusion: UVB and vitamin D may have an important influence on the development of bipolar disorder. Study limitations included a lack of data on patient vitamin D levels, lifestyles, or supplement use. More study of the impacts of UVB and vitamin D in bipolar disorder is needed to evaluate this supposition
AugerPrime surface detector electronics
Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of thefirst commissioning data will also be presented
Testing Hadronic-Model Predictions of Depth of Maximum of Air-Shower Profiles and Ground-Particle Signals using Hybrid Data of the Pierre Auger Observatory
We test the predictions of hadronic interaction models regarding the depth of
maximum of air-shower profiles, , and ground-particle signals in
water-Cherenkov detectors at 1000 m from the shower core, , using the
data from the fluorescence and surface detectors of the Pierre Auger
Observatory. The test consists in fitting the measured two-dimensional
(, ) distributions using templates for simulated air showers
produced with hadronic interaction models EPOS-LHC, QGSJet II-04, Sibyll 2.3d
and leaving the scales of predicted and the signals from hadronic
component at ground as free fit parameters. The method relies on the assumption
that the mass composition remains the same at all zenith angles, while the
longitudinal shower development and attenuation of ground signal depend on the
mass composition in a correlated way.
The analysis was applied to 2239 events detected by both the fluorescence and
surface detectors of the Pierre Auger Observatory with energies between
to eV and zenith angles below . We found,
that within the assumptions of the method, the best description of the data is
achieved if the predictions of the hadronic interaction models are shifted to
deeper values and larger hadronic signals at all zenith angles. Given
the magnitude of the shifts and the data sample size, the statistical
significance of the improvement of data description using the modifications
considered in the paper is larger than even for any linear
combination of experimental systematic uncertainties.Comment: Published versio
Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA), part of the Pierre Auger
Observatory, is currently the largest array of radio antenna stations deployed
for the detection of cosmic rays, spanning an area of km with 153
radio stations. It detects the radio emission of extensive air showers produced
by cosmic rays in the MHz band. Here, we report the AERA measurements
of the depth of the shower maximum (), a probe for mass
composition, at cosmic-ray energies between to eV,
which show agreement with earlier measurements with the fluorescence technique
at the Pierre Auger Observatory. We show advancements in the method for radio
reconstruction by comparison to dedicated sets of CORSIKA/CoREAS
air-shower simulations, including steps of reconstruction-bias identification
and correction, which is of particular importance for irregular or sparse radio
arrays. Using the largest set of radio air-shower measurements to date, we show
the radio resolution as a function of energy, reaching a
resolution better than g cm at the highest energies, demonstrating
that radio measurements are competitive with the established
high-precision fluorescence technique. In addition, we developed a procedure
for performing an extensive data-driven study of systematic uncertainties,
including the effects of acceptance bias, reconstruction bias, and the
investigation of possible residual biases. These results have been
cross-checked with air showers measured independently with both the radio and
fluorescence techniques, a setup unique to the Pierre Auger Observatory.Comment: Submitted to Phys. Rev.
The Pierre Auger Observatory Open Data
The Pierre Auger Collaboration has embraced the concept of open access to
their research data since its foundation, with the aim of giving access to the
widest possible community. A gradual process of release began as early as 2007
when 1% of the cosmic-ray data was made public, along with 100% of the
space-weather information. In February 2021, a portal was released containing
10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the
Observatory. The Portal included detailed documentation about the detection and
reconstruction procedures, analysis codes that can be easily used and modified
and, additionally, visualization tools. Since then the Portal has been updated
and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events
examined in depth has been included. A specific section dedicated to
educational use has been developed with the expectation that these data will be
explored by a wide and diverse community including professional and
citizen-scientists, and used for educational and outreach initiatives. This
paper describes the context, the spirit and the technical implementation of the
release of data by the largest cosmic-ray detector ever built, and anticipates
its future developments.Comment: 19 pages, 8 figure
- …