54 research outputs found

    Defining the characteristics and expectations of fluid bolus therapy: a worldwide perspective

    Get PDF
    Purpose: The purpose of the study is to understand what clinicians believe defines fluid bolus therapy (FBT) and the expected response to such intervention. Methods: We asked intensive care specialists in 30 countries to participate in an electronic questionnaire of their practice, definition, and expectations of FBT. Results: We obtained 3138 responses. Despite much variation, more than 80% of respondents felt that more than 250 mL of either colloid or crystalloid fluid given over less than 30 minutes defined FBT, with crystalloids most acceptable. The most acceptable crystalloid and colloid for use as FBT were 0.9% saline and 4% albumin solution, respectively. Most respondents believed that one or more of the following physiological changes indicates a response to FBT: a mean arterial pressure increase greater than 10 mm Hg, a heart rate decrease greater than 10 beats per minute, an increase in urinary output by more than 10 mL/h, an increase in central venous oxygen saturation greater than 4%, or a lactate decrease greater than 1 mmol/L. Conclusions: Despite wide variability between individuals and countries, clear majority views emerged to describe practice, define FBT, and identify a response to it. Further investigation is now required to describe actual FBT practice and to identify the magnitude and duration of the physiological response to FBT and its relationship to patient-centered outcomes.Facultad de Ciencias Médica

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Data from: Quantification and comparison of anti-fibrotic therapies by polarized SRM and SHG-based morphometry in rat UUO model

    No full text
    Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model. To validate the specificity of SHG for detecting fibrillar collagen components in IF, co-localization studies for collagens type I, III, and IV were performed using IHC. In addition, we examined the correlation, dynamic range, sensitivity, and ability of polarized SRM and SHG-based morphometry to detect an anti-fibrotic effect of three different treatment regimens. Comparisons were made across three separate studies in which animals were treated with three mechanistically distinct pharmacologic agents: enalapril (ENA, 15, 30, 60 mg/kg), mycophenolate mofetil (MMF, 2, 20 mg/kg) or the connective tissue growth factor (CTGF) neutralizing antibody, EX75606 (1, 3, 10 mg/kg). Our results demonstrate a strong co-localization of the SHG signal with fibrillar collagens I and III but not non-fibrillar collagen IV. Quantitative IF, calculated as percent cortical area of fibrosis, demonstrated similar response profile for both polarized SRM and SHG-based morphometry. The two methodologies exhibited a strong correlation across all three pharmacology studies (r2 = 0.89–0.96). However, compared with polarized SRM, SHG-based morphometry delivered a greater dynamic range and absolute magnitude of reduction of IF after treatment. In summary, we demonstrate that SHG-based morphometry in unstained kidney tissues is comparable to polarized SRM for quantitation of fibrillar collagens, but with an enhanced sensitivity to detect treatment-induced reductions in IF. Thus, performing SHG-based morphometry on unstained kidney tissue is a reliable alternative to traditional polarized SRM for quantitative analysis of IF
    corecore