50 research outputs found
Spatial separation of large dynamical blue shift and harmonic generation
We study the temporal and spatial dynamics of the large amplitude and
frequency modulation that can be induced in an intense, few cycle laser pulse
as it propagates through a rapidly ionizing gas. Our calculations include both
single atom and macroscopic interactions between the non-linear medium and the
laser field. We analyze the harmonic generation by such pulses and show that it
is spatially separated from the ionization dynamics which produce a large
dynamical blue shift of the laser pulse. This means that small changes in the
initial laser focusing conditions can lead to large differences in the laser
frequency modulation, even though the generated harmonic spectrum remains
essentially unchanged.Comment: 4 pages, 5 figures. Under revisio
Thermal Infrared Imager Development for CubeSat Constellation
Wildfires are becoming a major challenge to our civilization today. Early warning and detection of wildfires not only helps in managing them but also mitigates the loss of lives and property. To meet this challenge, OroraTech is developing a constellation of CubeSats for wildfire detection to alert about wildfire hazards within minutes instead of hours.
On board these CubeSats, a thermal infrared imager will scan the surface in multiple spectral bands to identify fires. Radiometric simulations with influences of sun glint, daylight and atmospheric absorption were done. A prototype of the imager based on an uncooled micro-bolometer focal plane array was developed including a shutter system, thermal stabilization, mounting structure and a data processing unit. The imager was tested for absolute temperature accuracy and noise behavior. With image processing the performance of the imager was further improved. The prototype is scheduled to fly on a stratospheric balloon late 2020, and the on-orbit demonstration is planned for early 2021
Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime
Nonlinear interactions between ultrashort optical waveforms and solids can be
used to induce and steer electric current on a femtosecond (fs) timescale,
holding promise for electronic signal processing at PHz frequencies [Nature
493, 70 (2013)]. So far, this approach has been limited to insulators,
requiring extremely strong peak electric fields and intensities. Here, we show
all-optical generation and control of directly measurable electric current in a
semiconductor relevant for high-speed and high-power (opto)electronics, gallium
nitride (GaN), within an optical cycle and on a timescale shorter than 2 fs, at
intensities at least an order of magnitude lower than those required for
dielectrics. Our approach opens the door to PHz electronics and metrology,
applicable to low-power (non-amplified) laser pulses, and may lead to future
applications in semiconductor and photonic integrated circuit technologies
Direct observation of narrow electronic energy band formation in 2D molecular self-assembly
Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation – as well as control and harnessing – of subtle electronic interactions between molecules in functional organic nanofilms
Ultrashort Free-Electron Laser X-ray Pulses
For the investigation of processes happening on the time scale of the motion of bound electrons, well-controlled X-ray pulses with durations in the few-femtosecond and even sub-femtosecond range are a necessary prerequisite. Novel free-electron lasers sources provide these ultrashort, high-brightness X-ray pulses, but their unique aspects open up concomitant challenges for their characterization on a suitable time scale. In this review paper we describe progress and results of recent work on ultrafast pulse characterization at soft and hard X-ray free-electron lasers. We report on different approaches to laser-assisted time-domain measurements, with specific focus on single-shot characterization of ultrashort X-ray pulses from self-amplified spontaneous emission-based and seeded free-electron lasers. The method relying on the sideband measurement of X-ray electron ionization in the presence of a dressing optical laser field is described first. When the X-ray pulse duration is shorter than half the oscillation period of the streaking field, few-femtosecond characterization becomes feasible via linear streaking spectroscopy. Finally, using terahertz fields alleviates the issue of arrival time jitter between streaking laser and X-ray pulse, but compromises the achievable temporal resolution. Possible solutions to these remaining challenges for single-shot, full time-energy characterization of X-ray free-electron laser pulses are proposed in the outlook at the end of the review