9,416 research outputs found
The Rise and Fall of Pentaquarks in Experiments
Experimental evidence for and against the existence of pentaquarks has
accumulated rapidly in the last three years. If they exist, they would be
dramatic examples of hadronic states beyond our well-tested and successful
particle models. The positive evidence suggests existence of baryonic objects
with widths of at most a few MeV, some displaying exotic quantum numbers, such
as baryons with strangeness . The non-observations of these states have
often come from reaction channels very different from the positive evidence
channels, making comparisons difficult. The situation has now been largely
clarified, however, by high-statistics repetitions of the positive sightings,
with the result that none of the positive sightings have been convincingly
reproduced. The most recent unconfirmed positive sightings suffer again from
low statistics and large backgrounds. It seems that a kind of ``bandwagon''
effect led to the overly-optimistic interpretation of numerous experiments in
the earlier reports of exotic pentaquarks.Comment: Presented at Particles and Nuclei International Conference
(PANIC'05), Santa Fe, N.M. October 28, 2005; 9 pages, 1 figur
Strangeness Production Experiments at Jefferson Lab
Experimental results for photo- and electro-production of open strangeness
from the Thomas Jefferson National Accelerator Facility are discussed. The
results are from work completed by mid-2003 on elementary production,
nuclear targets, and the exotic state. It is shown how the increases
in intensity and precision of JLab experiments over earlier work have allowed
new phenomena to become measurable.Comment: 14 pages, 10 figures, For proceedings of SENDAI03:
Electrophoto-production of Strangeness on Nucleons and Nucle
Simulating anthropogenic impacts to bird communities in tropical rain forests
We used an aggregated modelling approach to simulate the impacts ofanthropogenic disturbances on the long-term dynamics of faunal diversityin tropical rain forests. We restricted our study to bird communities eventhough the approach is more general. We developed a model calledBIODIV which simulated the establishment of hypothetical bird speciesin a forest. Our model was based on the results of a simple matrix modelwhich calculated the spatio-temporal dynamics of a tropical rain forest inMalaysia. We analysed the establishment of bird species in a secondaryforest succession and the impacts of 60 different logging scenarios on thediversity of the bird community. Of the three logging parameters(cycle length, method, intensity), logging intensity had the most servereimpact on the bird community. In the worst case the number of bird specieswas reduced to 23% of the species richness found in a primary forest
Sensing of Substrate Vibrations in the Adult Cicada Okanagana rimosa (Hemiptera: Cicadidae)
Detection of substrate vibrations is an evolutionarily old sensory modality and is important for predator detection as well as for intraspecific communication. In insects, substrate vibrations are detected mainly by scolopidial (chordotonal) sense organs found at different sites in the legs. Among these sense organs, the tibial subgenual organ (SGO) is one of the most sensitive sensors. The neuroanatomy and physiology of vibratory sense organs of cicadas is not well known. Here, we investigated the leg nerve by neuronal tracing and summed nerve recordings. Tracing with Neurobiotin revealed that the cicada Okanagana rimosa (Say) (Hemiptera: Cicadidae) has a femoral chordotonal organ with about 20 sensory cells and a tibial SGO with two sensory cells. Recordings from the leg nerve show that the vibrational response is broadly tuned with a threshold of about 1 m/s2 and a minimum latency of about 6 ms. The vibratory sense of cicadas might be used in predator avoidance and intraspecific communication, although no tuning to the peak frequency of the calling song (9 kHz) could be found
The two-proton shell gap in Sn isotopes
We present an analysis of two-proton shell gaps in Sn isotopes. As the
theoretical tool we use self-consistent mean-field models, namely the
relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with
two different pairing forces, a delta interaction (DI) model and a
density-dependent delta interaction (DDDI). We investigate the influence of
nuclear deformation as well as collective correlations and find that both
effects contribute significantly. Moreover, we find a further significant
dependence on the pairing force used. The inclusion of deformation plus
correlation effects and the use of DDDI pairing provides agreement with the
data.Comment: gzipped tar archiv containing LaTeX source, bibliography file
(*.bbl), all figures as *.eps, and the style file
Granulocyte-activating mediators (GRAM)
In the present study we investigated the capability of human epidermal cells to generate granulocyte-activating mediators (GRAM). It could be shown that human epidermal cells as well as an epidermoid carcinoma cell line (A431) produce an epidermal cell-derived granulocyte-activating mediator (EC-GRAM) which stimulates human granulocytes to release significant levels of toxic oxygen radicals as measured by a lucigenin-dependent chemiluminescence (CL). For further characterization of EC-GRAM the A431 cell line was used. Supernatants of A431 cells usually contained maximal EC-GRAM levels within 24 h of incubation. Factor production was enhanced by bacterial lipopolysaccharide (LPS), but not by silica particles and PHA. Moreover, freeze-thaw lysates of A431 cells and extracts of heat-separated human epidermis contained significant levels of EC-GRAM. Preincubation of granulocytes with EC-GRAM resulted in an enhanced response to subsequent stimulation with the chemotactic peptide f-met-phe. In contrast EC-GRAM did not affect the response to PMA or zymosan particles. However, EC-GRAM treated granulocytes were unresponsive to restimulation with EC-GRAM. Upon high performance liquid chromatography (HPLC) gel filtration EC-GRAM eluted within two major peaks exhibiting a molecular weight of 17 kD and 44 kD. According to its biochemical and biological properties EC-GRAM can be separated from other cytokines such as ETAF/-interleukin 1, interleukin 2, interferons, granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor (TNF). However, an antibody to human GM-CSF neutralized about 75% of the activity. These results indicate that EC-GRAM activity stimulating the generation of reactive oxygen species by granulocytes is probably due to GM-CSF
- âŠ