55 research outputs found

    Type 2-depleted fungal laccase

    Full text link

    Modulation of the redox state of the copper sites of human ceruloplasmin by chloride

    No full text
    Incubation of human ceruloplasmin with physiological concentrations of chloride at neutral pH invariably caused dramatic changes of both the spectroscopic and the functional properties of the protein. The optical intensity at 610 nm increased up to 60%, with a concomitant decrease at 330 nm and the appearance of new bands between 410 and 500 nm, Signals previously undetectable appeared in the EPR spectrum. On the basis of computer simulations, they were interpreted as stemming from an oxidized type 1 copper site and from a half-reduced type 3 copper pair. Removal of chloride completely restored the original optical and EPR lineshapes. Hydrogen peroxide, added to ceruloplasmin in the presence of chloride, was able to capture the electron of the half-reduced type 3 site and to yield a protein insensitive to subsequent removal and readdition of the anion. As a whole, the spectroscopic data indicate that a blue site is partially reduced in the resting protein and that, upon binding of chloride, human ceruloplasmin undergoes a structural change leading to displacement of an electron from the reduced type 1 site to the type 3 site pair. Chloride dramatically affected the catalytic efficiency of human ceruloplasmin. At neutral pH, the anion was an activator of the oxidase activity, being able to enhance up to tenfold the catalytic rate. At pH < 6, in line with all previous reports, chloride strongly inhibited the activity, At intermediate pH values, i.e., around 6, the effect was composite, with an activating effect at low concentration and an inhibitory effect at higher concentration. Since chloride is present at very high concentrations in the plasma, these results suggest that human ceruloplasmin is, in the plasma, under control of this anion
    corecore