106 research outputs found

    Searching for Paumanok: A Study of Library of Congress Authorities and Classifications for Indigenous Long Island, New York

    Get PDF
    Long Island is a case in point of the United States settler state landscape co-opting Indigenous peoples and places for naming geographies, beaches, and spaces. Despite ubiquity, the historic Indigenous origins and contexts have been largely obscured and overwritten. This study assesses the availability and accuracy of terms for organizing, classifying, and describing works by and about Indigenous Long Island. It reveals a lack of representation in catalog records and suggests remediation through establishing subjects and names with accurate, culturally relevant terms. A symbolic form of land acknowledgment, this practice of accountability fosters commemoration, reclamation, and reparation processes

    Searching for Paumanok: Methodology for a Study of Library of Congress Authorities and Classifications for Indigenous Long Island, New York

    Get PDF
    Part 1 of “Searching for Paumanok: A Study of Library of Congress Authorities and Classifications for Indigenous Long Island, New York” evaluated Library of Congress (LC) bibliographic tools and sources for description and arrangement of Indigenous Long Island collections. Part 2 details the processes for identifying and assessing subject headings, names, and classifications with an emphasis on decolonizing methodologies. The authors discuss practical strategies for examining representations of Indigenous peoples and their homelands in LC Authorities. The study culminates with a knowledge organization schema to improve bibliographic control and understandings of Indigenous Long Island history and culture

    Digital Repository Legacies: A Case Study in Assessing Organizational Trustworthiness

    Get PDF
    Academic libraries rarely discuss cases of digital repositories that do not meet the standards expected of trusted digital repositories. Implications from inconsistent adherence to technical and professional criteria often surface during migration projects. In 2020, Stony Brook University Libraries began migrating assets to a mono-repository environment. Persistent historical factors presented challenges to repository trustworthiness. This case study discusses a survey project to evaluate legacy repository statuses in the contexts of infrastructure, documentation, and staff capacity. It considers a paradigm of organizational accountability in digital asset stewardship and offers insights for reconciling inherited legacies with aspirations to be a trusted repository

    Stall-Induced Vibrations of the AVATAR Rotor Blade

    Get PDF
    In the course of the AVATAR project, partner predictions for key load components in storm/idle conditions separated in two groups. One group showed large loading due to edgewise instability, the other group damped edgewise oscillation and lower load levels. To identify the cause for this separation, the impact of structural and aerodynamic modeling options on damping of stall-induced vibrations is investigated for two simplified operating conditions of a single AVATAR blade. The choice of the dynamic stall model is found to be the primary driver, and is therefore most likely also the reason for previously observed differences in AVATAR storm load predictions. Differences in structural dynamics, mode shapes, structural and dynamic twist, as well as wake model are only secondary in terms of impact on damping. Resolution suffered from failure of system identification methods to extract reliable damping values from various non-linear response simulations

    Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017.

    Get PDF
    This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers

    MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation.

    Get PDF
    Blood-brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR-155 as a critical miRNA in neuroinflammation at the BBB. miR-155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR-155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR-155 was strongly and rapidly upregulated by inflammatory cytokines. miR-155 up-regulation mimicked cytokine-induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR-155 partially prevented a cytokine-induced increase in permeability. Furthermore, miR-155 modulated brain endothelial barrier function by targeting not only cell-cell complex molecules such as annexin-2 and claudin-1, but also focal adhesion components such as DOCK-1 and syntenin-1. We propose that brain endothelial miR-155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders

    Cultural Heritage Image Sharing Recommendations Report

    Get PDF
    Deliverable 13.2 for the WorldFAIR Project’s Cultural Heritage Work Package (WP13). Although the cultural heritage sector has only recently begun to think of traditional gallery, library, archival and museum (‘GLAM’) collections as data, long established practices guiding the management and sharing of information resources has aligned the domain well with the FAIR principles for research data, evidenced in complementary workflows and standards that support discovery, access, reuse, and persistence. As explored in the previous report by Work Package 13 for the WorldFAIR Project, D13.1 Practices and policies supporting cultural heritage image sharing platforms, memory institutions are in an important position to influence cross-domain data sharing practices and raise critical questions about why and how those practices are implemented. Deliverable 13.2 aims to build on our understanding of what it means to support FAIR in the sharing of image data derived from GLAM collections. This report looks at previous efforts by the sector towards FAIR alignment and presents 5 recommendations designed to be implemented and tested at the DRI that are also broadly applicable to the work of the GLAMs. The recommendations are ultimately a roadmap for the Digital Repository of Ireland (DRI) to follow in improving repository services, as well as a call for continued dialogue around ‘what is FAIR?’ within the cultural heritage research data landscape. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393

    P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation

    Get PDF
    Background: Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs). DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (Pgp). P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown. Methods and Findings: Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b-/-), since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b-/- mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-alpha and IFN-gamma. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines. Conclusions: Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible new target for immunotherap

    MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis.

    Get PDF
    Blood-brain barrier (BBB) dysfunction is a major hallmark of many neurological diseases, including multiple sclerosis (MS). Using a genomics approach, we defined a microRNA signature that is diminished at the BBB of MS patients. In particular, miR-125a-5p is a key regulator of brain endothelial tightness and immune cell efflux. Our findings suggest that repair of a disturbed BBB through microRNAs may represent a novel avenue for effective treatment of MS
    corecore