2,804 research outputs found

    Entropy exchange and entanglement in the Jaynes-Cummings model

    Full text link
    The Jaynes-Cummings model is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight (S. J. D. Phoenix, P. L. Knight, Annals of Physics 186, 381). of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e. where the rate of change of the two are anti-correlated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anti-correlation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.Comment: 8 pages, 5 figure

    BLITZEN: A highly integrated massively parallel machine

    Get PDF
    The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting

    Reciprocity relations between ordinary temperature and the Frieden-Soffer's Fisher-temperature

    Full text link
    Frieden and Soffer conjectured some years ago the existence of a ``Fisher temperature" T_F that would play, with regards to Fisher's information measure I, the same role that the ordinary temperature T plays vis-a-vis Shannon's logarithmic measure. Here we exhibit the existence of reciprocity relations between T_F and T and provide an interpretation with reference to the meaning of T_F for the canonical ensemble.Comment: 3 pages, no figure

    Fluctuating and dissipative dynamics of dark solitons in quasi-condensates

    Full text link
    The fluctuating and dissipative dynamics of matter-wave dark solitons within harmonically trapped, partially condensed Bose gases is studied both numerically and analytically. A study of the stochastic Gross-Pitaevskii equation, which correctly accounts for density and phase fluctuations at finite temperatures, reveals dark soliton decay times to be lognormally distributed at each temperature, thereby characterizing the previously predicted long lived soliton trajectories within each ensemble of numerical realizations (S.P. Cockburn {\it et al.}, Phys. Rev. Lett. 104, 174101 (2010)). Expectation values for the average soliton lifetimes extracted from these distributions are found to agree well with both numerical and analytic predictions based upon the dissipative Gross-Pitaevskii model (with the same {\it ab initio} damping). Probing the regime for which 0.8kBT<μ<1.6kBT0.8 k_{B}T < \mu < 1.6 k_{B}T, we find average soliton lifetimes to scale with temperature as τ∼T−4\tau\sim T^{-4}, in agreement with predictions previously made for the low-temperature regime kBT≪μk_{B}T\ll\mu. The model is also shown to capture the experimentally-relevant decrease in the visibility of an oscillating soliton due to the presence of background fluctuations.Comment: 17 pages, 14 figure

    Density of states determined from Monte Carlo simulations

    Full text link
    We describe method for calculating the density of states by combining several canonical monte carlo runs. We discuss how critical properties reveal themselves in g(ϵ)g(\epsilon) and demonstrate this by applying the method several different phase transitions. We also demonstrate how this can used to calculate the conformal charge, where the dominating numerical method has traditionally been transfer matrix.Comment: Major revision of paper, several references added throughout. Current version accepted for publication in Phys. Rev.

    Quantitative atomic spectroscopy for primary thermometry

    Get PDF
    Quantitative spectroscopy has been used to measure accurately the Doppler-broadening of atomic transitions in 85^{85}Rb vapor. By using a conventional platinum resistance thermometer and the Doppler thermometry technique, we were able to determine kBk_B with a relative uncertainty of 4.1×10−44.1\times 10^{-4}, and with a deviation of 2.7×10−42.7\times 10^{-4} from the expected value. Our experiment, using an effusive vapour, departs significantly from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly absorbing molecules in a diffusive regime. In these circumstances, very different systematic effects such as magnetic sensitivity and optical pumping are dominant. Using the model developed recently by Stace and Luiten, we estimate the perturbation due to optical pumping of the measured kBk_B value was less than 4×10−64\times 10^{-6}. The effects of optical pumping on atomic and molecular DBT experiments is mapped over a wide range of beam size and saturation intensity, indicating possible avenues for improvement. We also compare the line-broadening mechanisms, windows of operation and detection limits of some recent DBT experiments

    The chemical equilibration volume: measuring the degree of thermalization

    Full text link
    We address the issue of the degree of equilibrium achieved in a high energy heavy-ion collision. Specifically, we explore the consequences of incomplete strangeness chemical equilibrium. This is achieved over a volume V of the order of the strangeness correlation length and is assumed to be smaller than the freeze-out volume. Probability distributions of strange hadrons emanating from the system are computed for varying sizes of V and simple experimental observables based on these are proposed. Measurements of such observables may be used to estimate V and as a result the degree of strangeness chemical equilibration achieved. This sets a lower bound on the degree of kinetic equilibrium. We also point out that a determination of two-body correlations or second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex

    Logarithmic Relaxations in a Random Field Lattice Gas Subject to Gravity

    Full text link
    A simple lattice gas model with random fields and gravity is introduced to describe a system of grains moving in a disordered environment. Off equilibrium relaxations of bulk density and its two time correlation functions are numerically found to show logarithmic time dependences and "aging" effects. Similitudes with dry granular media are stressed. The connections with off equilibrium dynamics in others kinds of "frustrated" lattice models in presence of a directional driving force (gravity) are discussed to single out the appearance of universal features in the relaxation process.Comment: 15 pages, latex, 7 figures include

    Growth of Patterned Surfaces

    Full text link
    During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the one-dimensional case show that the quality of reproduction decays exponentially with a characteristic time which is linear in the activation energy of surface diffusion. We argue that this life time of a pattern is optimized, if the characteristic feature size of the pattern is larger than (D/F)1/(d+2)(D/F)^{1/(d+2)}, where DD is the surface diffusion constant, FF the deposition rate and dd the surface dimension.Comment: 4 pages, 4 figures, uses psfig; to appear in Phys. Rev. Let

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90∘^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure
    • …
    corecore