2,804 research outputs found
Entropy exchange and entanglement in the Jaynes-Cummings model
The Jaynes-Cummings model is the simplest fully quantum model that describes
the interaction between light and matter. We extend a previous analysis by
Phoenix and Knight (S. J. D. Phoenix, P. L. Knight, Annals of Physics 186,
381). of the JCM by considering mixed states of both the light and matter. We
present examples of qualitatively different entropic correlations. In
particular, we explore the regime of entropy exchange between light and matter,
i.e. where the rate of change of the two are anti-correlated. This behavior
contrasts with the case of pure light-matter states in which the rate of change
of the two entropies are positively correlated and in fact identical. We give
an analytical derivation of the anti-correlation phenomenon and discuss the
regime of its validity. Finally, we show a strong correlation between the
region of the Bloch sphere characterized by entropy exchange and that
characterized by minimal entanglement as measured by the negative eigenvalues
of the partially transposed density matrix.Comment: 8 pages, 5 figure
BLITZEN: A highly integrated massively parallel machine
The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting
Reciprocity relations between ordinary temperature and the Frieden-Soffer's Fisher-temperature
Frieden and Soffer conjectured some years ago the existence of a ``Fisher
temperature" T_F that would play, with regards to Fisher's information measure
I, the same role that the ordinary temperature T plays vis-a-vis Shannon's
logarithmic measure. Here we exhibit the existence of reciprocity relations
between T_F and T and provide an interpretation with reference to the meaning
of T_F for the canonical ensemble.Comment: 3 pages, no figure
Fluctuating and dissipative dynamics of dark solitons in quasi-condensates
The fluctuating and dissipative dynamics of matter-wave dark solitons within
harmonically trapped, partially condensed Bose gases is studied both
numerically and analytically. A study of the stochastic Gross-Pitaevskii
equation, which correctly accounts for density and phase fluctuations at finite
temperatures, reveals dark soliton decay times to be lognormally distributed at
each temperature, thereby characterizing the previously predicted long lived
soliton trajectories within each ensemble of numerical realizations (S.P.
Cockburn {\it et al.}, Phys. Rev. Lett. 104, 174101 (2010)). Expectation values
for the average soliton lifetimes extracted from these distributions are found
to agree well with both numerical and analytic predictions based upon the
dissipative Gross-Pitaevskii model (with the same {\it ab initio} damping).
Probing the regime for which , we find average
soliton lifetimes to scale with temperature as , in agreement
with predictions previously made for the low-temperature regime .
The model is also shown to capture the experimentally-relevant decrease in the
visibility of an oscillating soliton due to the presence of background
fluctuations.Comment: 17 pages, 14 figure
Density of states determined from Monte Carlo simulations
We describe method for calculating the density of states by combining several
canonical monte carlo runs. We discuss how critical properties reveal
themselves in and demonstrate this by applying the method several
different phase transitions. We also demonstrate how this can used to calculate
the conformal charge, where the dominating numerical method has traditionally
been transfer matrix.Comment: Major revision of paper, several references added throughout. Current
version accepted for publication in Phys. Rev.
Quantitative atomic spectroscopy for primary thermometry
Quantitative spectroscopy has been used to measure accurately the
Doppler-broadening of atomic transitions in Rb vapor. By using a
conventional platinum resistance thermometer and the Doppler thermometry
technique, we were able to determine with a relative uncertainty of
, and with a deviation of from the
expected value. Our experiment, using an effusive vapour, departs significantly
from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly
absorbing molecules in a diffusive regime. In these circumstances, very
different systematic effects such as magnetic sensitivity and optical pumping
are dominant. Using the model developed recently by Stace and Luiten, we
estimate the perturbation due to optical pumping of the measured value
was less than . The effects of optical pumping on atomic and
molecular DBT experiments is mapped over a wide range of beam size and
saturation intensity, indicating possible avenues for improvement. We also
compare the line-broadening mechanisms, windows of operation and detection
limits of some recent DBT experiments
The chemical equilibration volume: measuring the degree of thermalization
We address the issue of the degree of equilibrium achieved in a high energy
heavy-ion collision. Specifically, we explore the consequences of incomplete
strangeness chemical equilibrium. This is achieved over a volume V of the order
of the strangeness correlation length and is assumed to be smaller than the
freeze-out volume. Probability distributions of strange hadrons emanating from
the system are computed for varying sizes of V and simple experimental
observables based on these are proposed. Measurements of such observables may
be used to estimate V and as a result the degree of strangeness chemical
equilibration achieved. This sets a lower bound on the degree of kinetic
equilibrium. We also point out that a determination of two-body correlations or
second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex
Logarithmic Relaxations in a Random Field Lattice Gas Subject to Gravity
A simple lattice gas model with random fields and gravity is introduced to
describe a system of grains moving in a disordered environment. Off equilibrium
relaxations of bulk density and its two time correlation functions are
numerically found to show logarithmic time dependences and "aging" effects.
Similitudes with dry granular media are stressed. The connections with off
equilibrium dynamics in others kinds of "frustrated" lattice models in presence
of a directional driving force (gravity) are discussed to single out the
appearance of universal features in the relaxation process.Comment: 15 pages, latex, 7 figures include
Growth of Patterned Surfaces
During epitaxial crystal growth a pattern that has initially been imprinted
on a surface approximately reproduces itself after the deposition of an integer
number of monolayers. Computer simulations of the one-dimensional case show
that the quality of reproduction decays exponentially with a characteristic
time which is linear in the activation energy of surface diffusion. We argue
that this life time of a pattern is optimized, if the characteristic feature
size of the pattern is larger than , where is the surface
diffusion constant, the deposition rate and the surface dimension.Comment: 4 pages, 4 figures, uses psfig; to appear in Phys. Rev. Let
Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis
We extend our previous study of the polarization dependence of the nonlinear
optical response to the case of magnetic surfaces and buried magnetic
interfaces. We calculate for the longitudinal and polar configuration the
nonlinear magneto-optical Kerr rotation angle. In particular, we show which
tensor elements of the susceptibilities are involved in the enhancement of the
Kerr rotation in nonlinear optics for different configurations and we
demonstrate by a detailed analysis how the direction of the magnetization and
thus the easy axis at surfaces and buried interfaces can be determined from the
polarization dependence of the nonlinear magneto-optical response, since the
nonlinear Kerr rotation is sensitive to the electromagnetic field components
instead of merely the intensities. We also prove from the microscopic treatment
of spin-orbit coupling that there is an intrinsic phase difference of
90 between tensor elements which are even or odd under magnetization
reversal in contrast to linear magneto-optics. Finally, we compare our results
with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We
conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the
magnetic structure and in particular the magnetic easy axis in films and at
multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure
- …