3,360 research outputs found
Keeping a Quantum Bit Alive by Optimized -Pulse Sequences
A general strategy to maintain the coherence of a quantum bit is proposed.
The analytical result is derived rigorously including all memory and
back-action effects. It is based on an optimized -pulse sequence for
dynamic decoupling extending the Carr-Purcell-Meiboom-Gill (CPMG) cycle. The
optimized sequence is very efficient, in particular for strong couplings to the
environment.Comment: 4 pages, 2 figures; revised version with additional references for
better context, more stringent discussio
A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents
A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents
Raman spectroscopy on mechanically exfoliated pristine graphene ribbons
We present Raman spectroscopy measurements of non-etched graphene
nanoribbons, with widths ranging from 15 to 160 nm, where the D-line intensity
is strongly dependent on the polarization direction of the incident light. The
extracted edge disorder correlation length is approximately one order of
magnitude larger than on previously reported graphene ribbons fabricated by
reactive ion etching techniques. This suggests a more regular crystallographic
orientation of the non-etched graphene ribbons here presented. We further
report on the ribbons width dependence of the line-width and frequency of the
long-wavelength optical phonon mode (G-line) and the 2D-line of the studied
graphene ribbons
Flux Qubits and Readout Device with Two Independent Flux Lines
We report measurements on two superconducting flux qubits coupled to a
readout Superconducting QUantum Interference Device (SQUID). Two on-chip flux
bias lines allow independent flux control of any two of the three elements, as
illustrated by a two-dimensional qubit flux map. The application of microwaves
yields a frequency-flux dispersion curve for 1- and 2-photon driving of the
single-qubit excited state, and coherent manipulation of the single-qubit state
results in Rabi oscillations and Ramsey fringes. This architecture should be
scalable to many qubits and SQUIDs on a single chip.Comment: 5 pages, 4 figures, higher quality figures available upon request.
Submitted to PR
The alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers mediate cell attachment to distinct sites on laminin.
This study was undertaken to determine the roles of individual alpha/beta 1 integrin heterodimers in promoting cellular interactions with the different attachment-promoting domains of laminin (LN). To do this, antibodies to the integrin beta 1 subunit or to specific integrin alpha subunits were tested for effects on cell attachment to LN, to elastase fragments E1-4 and E1, derived from the short arms and core of LN's cruciform structure, and to fragment E8 derived from the long arm of this structure. The human JAR choriocarcinoma cells used in this study attached to LN and to fragments E1 and E8. Attachment to E1-4 required a much higher substrate coating concentration, suggesting that it is a poor substrate for JAR cell attachment. The ability of cells to attach to different LN domains suggested the presence of more than one LN receptor. These multiple LN receptors were shown to be beta 1 integrin heterodimers because antibodies to the integrin beta 1 subunit inhibited attachment of JAR cells to LN and its three fragments. To identify the individual integrin alpha/beta 1 heterodimers that mediate interactions with these LN domains, mAbs specific for individual beta 1 heterodimers in human cells were used to study JAR cell interactions with LN and its fragments. An anti-alpha 6/beta 1-specific mAb, GoH3, virtually eliminated cell attachment to E8 and partially inhibited attachment to E1 and intact LN. Thus the major alpha 6/beta 1 attachment domain is present in fragment E8. An alpha 1/beta 1-specific mAb (S2G3) strongly inhibited cell attachment to collagen IV and partially inhibited JAR attachment to LN fragment E1. Thus, the alpha 1/beta 1 heterodimer is a dual receptor for collagen IV and LN, interacting with LN at a site in fragment E1. In combination, the anti-alpha 1- and anti-alpha 6-specific antibodies completely inhibited JAR cell attachment to LN and fragment E1. Thus, the alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers each function as LN receptors and act together to mediate the interactions of human JAR choriocarcinoma cells with LN
Statistical Mechanics of Community Detection
Starting from a general \textit{ansatz}, we show how community detection can
be interpreted as finding the ground state of an infinite range spin glass. Our
approach applies to weighted and directed networks alike. It contains the
\textit{at hoc} introduced quality function from \cite{ReichardtPRL} and the
modularity as defined by Newman and Girvan \cite{Girvan03} as special
cases. The community structure of the network is interpreted as the spin
configuration that minimizes the energy of the spin glass with the spin states
being the community indices. We elucidate the properties of the ground state
configuration to give a concise definition of communities as cohesive subgroups
in networks that is adaptive to the specific class of network under study.
Further we show, how hierarchies and overlap in the community structure can be
detected. Computationally effective local update rules for optimization
procedures to find the ground state are given. We show how the \textit{ansatz}
may be used to discover the community around a given node without detecting all
communities in the full network and we give benchmarks for the performance of
this extension. Finally, we give expectation values for the modularity of
random graphs, which can be used in the assessment of statistical significance
of community structure
Generalised state spaces and non-locality in fault tolerant quantum computing schemes
We develop connections between generalised notions of entanglement and
quantum computational devices where the measurements available are restricted,
either because they are noisy and/or because by design they are only along
Pauli directions. By considering restricted measurements one can (by
considering the dual positive operators) construct single particle state spaces
that are different to the usual quantum state space. This leads to a modified
notion of entanglement that can be very different to the quantum version (for
example, Bell states can become separable). We use this approach to develop
alternative methods of classical simulation that have strong connections to the
study of non-local correlations: we construct noisy quantum computers that
admit operations outside the Clifford set and can generate some forms of
multiparty quantum entanglement, but are otherwise classical in that they can
be efficiently simulated classically and cannot generate non-local statistics.
Although the approach provides new regimes of noisy quantum evolution that can
be efficiently simulated classically, it does not appear to lead to significant
reductions of existing upper bounds to fault tolerance thresholds for common
noise models.Comment: V2: 18 sides, 7 figures. Corrected two erroneous claims and one
erroneous argumen
Impact of Many-Body Effects on Landau Levels in Graphene
We present magneto-Raman spectroscopy measurements on suspended graphene to
investigate the charge carrier density-dependent electron-electron interaction
in the presence of Landau levels. Utilizing gate-tunable magneto-phonon
resonances, we extract the charge carrier density dependence of the Landau
level transition energies and the associated effective Fermi velocity
. In contrast to the logarithmic divergence of at
zero magnetic field, we find a piecewise linear scaling of as a
function of charge carrier density, due to a magnetic field-induced suppression
of the long-range Coulomb interaction. We quantitatively confirm our
experimental findings by performing tight-binding calculations on the level of
the Hartree-Fock approximation, which also allow us to estimate an excitonic
binding energy of 6 meV contained in the experimentally extracted
Landau level transitions energies.Comment: 10 pages, 6 figure
- …