4 research outputs found
Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation.
We continuously monitored shoot and root gas exchange, δ13CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13CO2 canopy pulse-labeling, supplemented by soil-applied 15N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk.
Previously heat-treated seedlings rapidly translocated 13C along the long-distance transport path, to root respiration (Rroot; 7.1 h) and SMB (3 d). Furthermore, 13C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation.
C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above–belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity
No systematic effects of sampling direction on climate-growth relationships in a large-scale, multi-species tree-ring data set
Ring-width series are important for diverse fields of research such as the study of past climate, forest ecology, forest genetics, and the determination of origin (dendro-provenancing) or dating of archaeological objects. Recent research suggests diverging climate-growth relationships in tree-rings due to the cardinal direction of extracting the tree cores (i.e. direction-specific effect). This presents an understudied source of bias that potentially affects many data sets in tree-ring research. In this study, we investigated possible direction-specific growth variability based on an international (10 countries), multi-species (8 species) tree-ring width network encompassing 22 sites. To estimate the effect of direction-specific growth variability on climate-growth relationships, we applied a combination of three methods: An analysis of signal strength differences, a Principal Component Gradient Analysis and a test on the direction-specific differences in correlations between indexed ring-widths series and climate variables. We found no evidence for systematic direction-specific effects on tree radial growth variability in high-pass filtered ring-width series. In addition, direction-specific growth showed only marginal effects on climate-growth correlations. These findings therefore indicate that there is no consistent bias caused by coring direction in data sets used for diverse dendrochronological applications on relatively mesic sites within forests in flat terrain, as were studied here. However, in extremely dry, warm or cold environments, or on steep slopes, and for different life-forms such as shrubs, further research is advisable.</p