79 research outputs found
High-precision GPS survey of Via Appia: Archaeoastronomy-related aspects
Via Appia was built by the Romans around 312 BCE to connect Rome with Capua during the Samnite wars. The road is an astonishing engineering masterpiece. In particular, the segment which runs from Collepardo to Terracina â 61 km long â is renowned for being virtually straight; however this âstraightnessâ was never investigated quantitatively. As a consequence, the techniques used by the ancient surveyors and their scope â whether it was only practical, or also symbolic â remain obscure. We report here a high-precision GPS survey of the road, performed with a u-blox receiver and further checked with a dual frequency receiver. We give a detailed analysis of the methods used and of the errors, which are shown to be less than 6â. To our knowledge it is the first time that such a long ancient manufactured structure has been surveyed with such a high accuracy. The results lead us to conclude that astronomy was certainly used in the construction of the road and in that of the associated grid, oriented to the setting of the star Castor and to the cardinal points respectively
Dipping prism modelling of subduction plates in view of an improved GOCE Global Moho: The Tonga example
The study of subduction zones, i.e. the process occurring at convergent boundaries by which one tectonic plate moves under another and sinks into the mantle, is a fundamental topic in many Earthârelated sciences. Since usually important density variations occur in the corresponâ dence of subduction zones, a proper modelling of these regions is fundamental when studying the Earth crust from gravity field observations. In the present work, we investigate the possibility to characterize a subduction zone by exploiting GOCE gravity gradients. The main obâ jective of the work is to find a simple way to model subducting plates in view of a global inversion of the gravity field to recover the main features of the Earth crust. In particular, GOCE alongâorbit filtered data are firstly reduced for the effects of the bathymetry, upperâsediâ ments, middleâsediments, and lowerâsediments. After that, the residual signal is further reduced for the effect of a âregular crustâ by means of a Kriging procedure, isolating, in this way, the gravitational effect of the subducting plate. The signal is thus fitted, by means of a simâ ulated annealing (SA) procedure, with the gravitational effect of a dipping prism, characterized by a set of parameters that define the prism position, size, density, and its strike and dipping angles. The methodology has been firstly assessed in a closedâloop experiment to test the performance of the SA algorithm in detecting the parameâ ters used to best fit the isolated gravitational signal of the subduction plate. Then, the Tonga subduction plate has been chosen as a natural labâ oratory to perform some numerical experiments. The closedâloop simulations have shown the capability of the proposed approach to estimate the parameters with a relative error smaller than 10%, even in the presence of observation noise. As for the Tonga subduction, the estimated model wellâfit the observed gravitational signal and its geometric parameters are highlyâconsistent with the values available in the literature
GNSS-based dam monitoring: The application of a statistical approach for time series analysis to a case study
Dams are one of the most important engineering works of the current human society, and it is crucial to monitor and obtain analytical data to log their conditions, predict their behavior and, eventually, receive early warnings for planning interventions and maintenance activities. In this context, GNSS-based point displacement monitoring is nowadays a consolidated technique that is able to provide daily millimeter level accuracy, even with less sophisticated and less expensive single-frequency equipment. If properly designed, daily records of such monitoring systems produce time series that, when long enough, allow for an accurate reconstruction of the geometrical deformation of the structure, thus guiding semi-automatic early warning systems. This paper focuses on the procedure for the GNSS time series processing with a statistical approach. In particular, real-world times series collected from a dam monitoring test case are processed as an example of data filtering. A removeârestore technique based on a collocation approach is applied here. Basically, it consists of an initial deterministic modeling by polynomials and periodical components through least squares adjustment and Fourier transform, respectively, followed by a stochastic modeling based on empirical covariance estimation and a collocation approach. Filtered time series are interpreted by autoregressive models based on environmental factors such as air or water temperature and reservoir water level. Spatial analysis is finally performed by computing correlations between displacements of the monitored points, as well as by visualizing the overall structure deformation in time. Results positively validate the proposed data processing workflow, providing useful hints for the implementation of automatic early warning systems in the framework of structural monitoring based on continuous displacement measurements
Covariance function modelling in local geodetic applications using the simplex method
Collocation has been widely applied in geodesy for estimating the gravity field of the Earth both locally and globally. Particularly, this is the standard geodetic method used to combine all the available data to get an integrated estimate of any functional of the anomalous potential T. The key point of the method is the definition of proper covariance functions of the data. Covariance function models have been proposed by many authors together with the related software. In this paper a new method for finding suitable covariance models has been devised. The covariance fitting problem is reduced to an optimization problem in Linear Programming and solved by using the Simplex Method. The procedure has been implemented in a FORTRAN95 software and has been tested on simulated and real data sets. These first tests proved that the proposed method is a reliable tool for estimating proper covariance function models to be used in the collocation procedure
The Gravity Effect of Topography: A Comparison among Three Different Methods
In this paper, three different methods for computing the terrain correction have been compared. The terrain effect has been accounted for by using the standard right parallelepiped closed formula, the spherical tesseroid and the flat tesseroid formulas. Particularly, the flat tesseroid approximation is obtained by flattening the top and the bottom sides of the spherical tesseroid. Its gravitational effect can be computed as the gravitational effect of a polyhedron, i.e. a three-dimensional body with flat polygonal faces, straight edges and sharp corners or vertices. These three methods have been applied in the context of a Bouguer reduction scheme. Two tests were devised in the Alpine area in order to quantify possible discrepancies. In the first test, the terrain correction has been evaluated on a grid of points on the DTM. In the second test, Bouguer gravity anomalies were computed on sparse observed gravity data points. The results prove that the three methods are practically equivalent even in an area of rough topography though, in the second test, the Bouguer anomalies obtained by using the tesseroid and the flat tesseroid formulas have slightly smaller RMSs than the one obtained by applying the standard right parallelepiped formula
Studio della quota di volo mediante GNSS, altimetro radar e barometro per rilievi di spettroscopia gamma da velivolo
Lo studio della distribuzione dei radionuclidi terrestri (238U, 232Th e 40K) realizzato mediante tecniche di spettroscopia gamma da velivolo è influenzato dalla quota a cui il rivelatore si trova rispetto al suolo. Un'incertezza del 10% a 100 m di altezza origina un errore nella stima del segnale gamma del 208Tl, appartenente alla catena di decadimenti del 232Th, dellâordine del 7%. L'impiego di una nuova classe di spettrometri montati a bordo di UAV (Unmanned Aerial Vehicle) per raffinate misure in contesti ostili o remoti rende necessaria un'accurata stima in real time della quota di volo. Il Radgyro è un velivolo dedicato a survey multiparametrici, capace di trasportare strumentazione pari ad un payload massimo di 120 kg, tra cui quattro spettrometri gamma NaI(Tl). Una stazione inerziale con ricevitore integrato GNSS (Global Navigation Satellite System) restituisce l'assetto del velivolo con una frequenza massima di 400 Hz. Il velivolo è dotato di un network di tre ricevitori GNSS posizionati alle estremitĂ della carena del velivolo. Un altimetro radar a 24 GHz rileva la quota con una frequenza di 60 Hz. La misura di pressione e temperatura consente di ricavare la quota barometrica a 2 Hz. Con l'obiettivo di studiare le incertezze associate alle misure della quota di volo acquisite dagli altimetri in relazione ai dati GNSS, sono stati realizzati tre voli sul mare in un range di altezze comprese tra 31 m e 249 m, per un totale di 4702 secondi di volo effettivo. Al termine dello studio è possibile concludere che l'errore complessivo delle abbondanze di K, U e Th aumenta di 7.7%, 0.5% e 2.7% rispettivamente, a causa delle incertezze della quota di volo
The MOCAST+âStudy on a Quantum Gradiometry Satellite Mission with Atomic Clocks
In the past twenty years, satellite gravimetry missions have successfully provided data for the determination of the Earth static gravity field (GOCE) and its temporal variations (GRACE and GRACE-FO). In particular, the possibility to study the evolution in time of Earth masses allows us to monitor global parameters underlying climate changes, water resources, flooding, melting of ice masses and the corresponding global sea level rise, all of which are of paramount importance, providing basic data on, e.g. geodynamics, earthquakes, hydrology or ice sheets changes. Recently, a large interest has developed in novel technologies and quantum sensing, which promise higher sensitivity, drift-free measurements, and higher absolute accuracy for both terrestrial surveys and space missions, giving direct access to more precise long-term measurements. Looking at a time frame beyond the present decade, in the MOCAST+ study (MOnitoring mass variations by Cold Atom Sensors and Time measures) a satellite mission based on an âenhancedâ quantum payload is proposed, with cold atom interferometers acting as gravity gradiometers, and atomic clocks for optical frequency measurements, providing observations of differences of the gravitational potential. The main outcomes are the definition of the accuracy level to be expected from this payload and the accuracy level needed to detect and monitor phenomena identified in the Scientific Challenges of the ESA Living Planet Program, in particular Cryosphere, Ocean and Solid Earth. In this paper, the proposed payload, mission profile and preliminary platform design are presented, with end-to-end simulation results and assessment of the impact on geophysical applications
- âŚ