713 research outputs found

    Mechanical properties of viral capsids

    Full text link
    Viruses are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atmospheres. In this paper we investigate the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent to their discrete and polyhedral nature. We calculate the distribution of stress in these capsids and analyze their response to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity). We compare our results with appropriate generalizations of classical (i.e., continuum) elasticity theory. We also examine competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed

    Interplay of frequency-synchronization with noise: current resonances, giant diffusion and diffusion-crests

    Full text link
    We elucidate how the presence of noise may significantly interact with the synchronization mechanism of systems exhibiting frequency-locking. The response of these systems exhibits a rich variety of behaviors, such as resonances and anti-resonances which can be controlled by the intensity of noise. The transition between different locked regimes provokes the development of a multiple enhancement of the effective diffusion. This diffusion behavior is accompanied by a crest-like peak-splitting cascade when the distribution of the lockings is self-similar, as it occurs in periodic systems that are able to exhibit a Devil's staircase sequence of frequency-lockings.Comment: 7 pages, 6 figures, epl.cls. Accepted for publication in Europhysics Letter

    Entropic stochastic resonance: the constructive role of the unevenness

    Full text link
    We demonstrate the existence of stochastic resonance (SR) in confined systems arising from entropy variations associated to the presence of irregular boundaries. When the motion of a Brownian particle is constrained to a region with uneven boundaries, the presence of a periodic input may give rise to a peak in the spectral amplification factor and therefore to the appearance of the SR phenomenon. We have proved that the amplification factor depends on the shape of the region through which the particle moves and that by adjusting its characteristic geometric parameters one may optimize the response of the system. The situation in which the appearance of such entropic stochastic resonance (ESR) occurs is common for small-scale systems in which confinement and noise play an prominent role. The novel mechanism found could thus constitute an important tool for the characterization of these systems and can put to use for controlling their basic properties.Comment: 8 pages, 8 figure

    Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria

    Get PDF
    We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one dimensional diffusion. The validity of this approximation, being based on the assumption of an instantaneous equilibration of the particle distribution in the cross-section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.Comment: 20 pages, 7 figure
    • …
    corecore