713 research outputs found
Mechanical properties of viral capsids
Viruses are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atmospheres. In this paper we investigate the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent to their discrete and polyhedral nature. We calculate the distribution of stress in these capsids and analyze their response to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity). We compare our results with appropriate generalizations of classical (i.e., continuum) elasticity theory. We also examine competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed
Interplay of frequency-synchronization with noise: current resonances, giant diffusion and diffusion-crests
We elucidate how the presence of noise may significantly interact with the
synchronization mechanism of systems exhibiting frequency-locking. The response
of these systems exhibits a rich variety of behaviors, such as resonances and
anti-resonances which can be controlled by the intensity of noise. The
transition between different locked regimes provokes the development of a
multiple enhancement of the effective diffusion. This diffusion behavior is
accompanied by a crest-like peak-splitting cascade when the distribution of the
lockings is self-similar, as it occurs in periodic systems that are able to
exhibit a Devil's staircase sequence of frequency-lockings.Comment: 7 pages, 6 figures, epl.cls. Accepted for publication in Europhysics
Letter
Entropic stochastic resonance: the constructive role of the unevenness
We demonstrate the existence of stochastic resonance (SR) in confined systems
arising from entropy variations associated to the presence of irregular
boundaries. When the motion of a Brownian particle is constrained to a region
with uneven boundaries, the presence of a periodic input may give rise to a
peak in the spectral amplification factor and therefore to the appearance of
the SR phenomenon. We have proved that the amplification factor depends on the
shape of the region through which the particle moves and that by adjusting its
characteristic geometric parameters one may optimize the response of the
system. The situation in which the appearance of such entropic stochastic
resonance (ESR) occurs is common for small-scale systems in which confinement
and noise play an prominent role. The novel mechanism found could thus
constitute an important tool for the characterization of these systems and can
put to use for controlling their basic properties.Comment: 8 pages, 8 figure
Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria
We study biased, diffusive transport of Brownian particles through narrow,
spatially periodic structures in which the motion is constrained in lateral
directions. The problem is analyzed under the perspective of the Fick-Jacobs
equation which accounts for the effect of the lateral confinement by
introducing an entropic barrier in a one dimensional diffusion. The validity of
this approximation, being based on the assumption of an instantaneous
equilibration of the particle distribution in the cross-section of the
structure, is analyzed by comparing the different time scales that characterize
the problem. A validity criterion is established in terms of the shape of the
structure and of the applied force. It is analytically corroborated and
verified by numerical simulations that the critical value of the force up to
which this description holds true scales as the square of the periodicity of
the structure. The criterion can be visualized by means of a diagram
representing the regions where the Fick-Jacobs description becomes inaccurate
in terms of the scaled force versus the periodicity of the structure.Comment: 20 pages, 7 figure
- …